LOCKHEED MISSILES AND SPACE CO INC PALO ALTO CA PALO -=ETC F/6 13/13
INTERACTIVE NONLINEAR STRUCTURAL ANALYSIS: ENHANCEMENT.(U)

JUL 81 6 M STANLEY NUU014=80-C-0831
UNCLASSIFIED LMSC~D811535 NL

. IIIIiI|IIIII|IIIII||IIIII|IIIII||IIII||IIIII|IIIII|IIII||IIII||IIIII|IIIII

A103 801

—A

INTERACTIVE NONLINEAR STRUCTURAL
ANALYSIS: ENHANCEMENT, ° .\

e e e 5 |

7

-4

© . T et T

g e o Wl Tt . g e e

”4\§inal e ﬁ;f; 5 Q
\ Spt.)

L |

=

o)

SO / Q:;'é; >

<

<

Q

<

;1 25 Contract NpOO14-8p-cL0831 F *
i e T RES T L ST :
i X 1MSC-D811535 131 Julgem9sl; /<) -
j N e N Bl
i -i ‘ - - / : ’
,j - < s - .

f 1

Bl

e

R Ty N P

Prepared by:
i G M.‘Stanleyi
Applied aboratory
Department 52-33, Building 255
LOCKHEED PALO ALTO RESEARCH LABORATORY

3251 Hanover Street
Palo Alto, California 94304

Fraergth -WW s I ',_, n— AT s s

: 3
G I s T i

GRAPHICS-INTERACTIVE STRUCTURAL ANALYSIS
VIA THE GIFTS/STAGS SOFTWARE ASSEMBLY
[TUTORIAL]

o b T e R DI AA A B N Ran T 2 0T L

; G. M. Stanley H. A. Kamel
: Lockheed pPalo Alto University of Arizona

; MAY 1981

Acces

Slon wop
NTIS fn.:[: . ——
PRGBSl S

i s IAMATA AL U, Btinige S, el R e

1
)
!

:
Y
b
3

GIST Tutorial

CONTENTS

PART O: OVERVIEW; The GIST System

PART 1: ACCESS; The GIST Command Language Page
Section 1.0 Introduction e & o ¢ s & s 6 & 0 e e e o 2
. 1.1 Logging On and Off; the Jobname 3
1.2 Rules for Entering Commands . . . + « « o & 5
l '] 3 The HELP Command L) * L] L L] L] L] L] L] . [] * L] 9
1.4 Command Summary (Brief) . . ¢« ¢« ¢« ¢« ¢ « o & 11
1.5 Command Descriptions (Comprehensive) 12]
.13 PART 2: APPLICATION; GIST Structural Analysis Page
f_g Section 2.0 Introduction 4 e e 6 6 o o o o o o 2
f‘g 2.1 The Pre-processing Phase . . « + « & « o o 4 :
; 2.1.1 Model Generation . . . ¢« ¢ ¢ ¢ ¢ ¢ S
4 2.1.2 Load/BC Generation 12
2,2 The Analysis Phase « « « « 19
2.2,1 Analysis "Setup” . . ¢ & ¢ ¢ o o o & 21
2.2.2 Analysis Strategy ¢ ¢ o s o o o o o 24
2.2.3 Analysis Computation . . .« « « o« « & 45
2.3 The Postprocessing Phase . « « ¢« ¢ « ¢ o o & 47 i
2.3.1 "pPhysical® Evaluation e o o o s o 48
2,3,2 "Computational" Evaluation 57
& 2.4 Database Management « « o » » « « « 58 |
3 2 .4 . 1 The Database Layout e @& e ® o o o o 5 9
2.4.2 Monitoring the Database e o o o s @ 63
2 '4 '4 Editing the Database L] L] L] L] L] L] L] [] 65
2.5 Interactive Sample Case8 . + « ¢ « o » o o & 67

PART 3: ARCHITECTURE; GIST Software Components

Section 3.0 Introduction e o o o o o o o o o
3.1 GIFTS Architecture . ¢« ¢« ¢ o o o o«
3.2 STAGS Architecture , . ¢« « ¢« « « &
3.4 The STAGS->GIFTS Adaptor . . « . .
3.5 The GIST Control Module

b

i RN ‘M’;}aﬂf’%‘*‘\‘w"“ e oy {caindr e ey

A NG e v

GIST Tutorial / CONTENTS

APPENDIX A: SUMMARY OF GIFTS~STAGS INTERFACE CONVENTIONS
APPENDIX B: STAGS REVISIONS FOR GIST COMPATIBILITY
APPENDIX C: COMPUTER IMPLEMENTATION

REFERENCES

PAGE

A R S SR TN o A e i oSG R R B i < P AN v 1 A

THE GIST TUTORTIAL

X . OVERVIEW; THE GIST SYSTEM

GIST Tutorial / Overview PAGE 2

&WHAT IS THE GIST OF 1IT?

GIST is a system for performing NONLINEAR FINITE-ELEMENT STRUCTURAL
ANALYSIS in an INTERACTIVE, GRAPHICS-ORIENTED computational
environment. The system constitutes a network of integrated
software processors, i.e., independently executable computer
programs, collectively referred to as the GIFTS/STAGS Software
Assembly, or more concisely as GIST.

This network is analogous to a computer operating system, which
enables the user to perform a wide variety of operations accessible
through a common "command®™ (or "control") language. Many of these
operations are actually performed by independent processors which
are linked through a "global database”™ to behave as an integrated
systen,

Thus, GIST may be regarded as a special-purpose (or "virtual")
operating system for structural analysis, where instead of text
editors, compilers and file handlers, GIST employs model editors,
structural analyzers and solution post-processors as basic
components, Furthermore, the user addresses the GIST "operating
system” in a PROBLEM-ORIENTED COMMAND LANGUAGE, and is free (by
virtue of the global database) to exercise the system in a
"reasonably” arbritrary fashion, with frequent stops and restarts.

N

To clarify the above notions, we now introduce the user to the
principal components of the GIFTS/STAGS Software Assembly:

WHAT ARE THE BASIC COMPONENTS OF GIST?

GIFTS (Graphics-Interactive Finite element Timesharing System) is a
collection of software processors primarily designed for convenient
definition and evaluation of genéral (three-dimensional) finite
element structural models [Gl]. Featuring extensive graphics
capabilities driven by both command language and optically digitized
input, and a global database utilized for archival by all of its
processors, GIFTS provides both a user- and developer- oriented
approach to pre- and post- processing. Other members of the GIFTS
processor family perform linear analysis functions and include
bandwidth optimization and reduced substructuring. However, of
particular importance here will be the pre- and post- processing
functions which, as a virtue of the GIFTS architecture, are
interfacable to a variety of more general analyzers [Gll].

STAGS (STructural Analysis of General Shells) is a finite element
structural analyzer primarily intended for "moderately" nonlinear
analysis of generally configured shell structures [Sl]. Its
capabilities include static, dynamic and eigenvalue
(buckling/vibration) analysis and permit both geometric and material
nonlinearities, Solution strategies are partially automated and
partially user-controlled with an emphasis towards computational
efficiency. Architecturally, STAGS consists of two general-purpose
processors: a "pre-analyzer" which defines the mathematical model,
and an "analyzer" which performs the actual solution. Like GIFTS,

GIST Tutorial / Overview PAGE 3

STAGS also relies on a global database for incremental operation
(e.g., restarts) and analysis archival, but employs an independent
data-management system (DAL). Unlike GIFTS, STAGS is not an
inherently interactive system, but when accessed within the GIST
framework this distinction disappears.

To enable the coordinated utilization of GIFTS pre- and
post-processing and STAGS analysis capabilities within the same
application, three additional "architectural" components have been
introduced. This triad of special processors, which is derived from
the NICE [N1] utility library, performs most of the work which is
NOT specifically related to structural analysis -- permitting the
user to concentrate on the problem at hand.

The G2S (GIFTS->STAGS) and 8§26 (STAGS->GIFTS) "adaptor"™ modules
establish the necessary link between the independent GIFTS and STAGS
global databases. They are thus introduced at the pre-processing ->.
analysis, and analysis =-> post-processng interfaces, respectively.
In addition to moving data around, the adaptors are necessary to
ensure data compatibility and should alert the user regarding
"unadaptable” situations (e.g., a GIFTS option which is not
recognized by STAGS).

The GIST Gontrol Module completes the triad and is the most visible
of the architectural components. It is this processor which
intermediates between the user and the computer operating system to
produce an analysis oriented setting; through the GIST Command
Language, the user interacts with the Control Module and thereby
invokes the capabilities of GIFTS/STAGS. For example, by issuing
the 'EDITM' command from the GIST Control Module, control is
transferred to the GIFTS model editor, and automatically returned
upon completion of the model editing session. Similarly, various
GIST analysis commands allow the user to interactively prepare
solution strategy and engage the STAGS analyzer in either on- or
off- line computation. Additional functions of the Control Module
include monitoring problem status (through the global database),
interjecting "adaptor™ modules as necessary, and providing extended
analysis REVIEW, HELP and data-management capabilities via command.

WHAT ARE THE REQUIREMENTS FOR UTILIZING GIST?

The prospective GIST user will be relieved to know that the system
can be applied with relatively little effort. However, this will
depend strongly on the user's previous experience with computational
structural analysis in general, and with GIFTS or STAGS in
particular. Starting with a fundamental background in finite-
element structural analysis, the initial task reduces to: (1)
learning some basic GIST Commands, (2) developing experience with
the interactive GIFTS pre- and post-processors, and (3)
understanding the key assumptions and limitations engendered by the
STAGS analyzer. An effective approach is to perform a casual
reading of the User's Manuals (GIST, GIFTS and STAGS) followed by an
immediate application of the system to a simple, "test-case"

GIST Tutorial / Overview PAGE 4
{

problem. Due to the availability of on-line documentation (via
HELP) , the attempt should prove educational, if not successful.

For those who find the on-line documentation insufficient, there is
a substantial base of reference material available to complement,
refresh and expand the user's knowledge of the system.
Nevertheless, the user is reminded that ‘"“nonl}linear" structural
analysis, at the present time, is noet a uniformly ppedjictable
rocess. Thus computational strategies will often require a
combination of preliminary studies, npumerical Xper : apd
physical insight to obtain meaningful solutions. It is hoped that
the interactive features of the GIST System will both facilitate and
enrich this process,

WHAT IS THE SCOPE OF THE GIST TUTORIAL?

The GIST Tutorial is intended as both a primer to the GIFT/STAGS
Software Assembly, and as a reference manual for the GIST Command
Language, Consequently, the user should find enough here to get
started with appropriate references made to more specific
documentation. This is not unlike the documentation structure of
some computer operating systems. It allows the user to branch-out
according to need and not be over- whelmed with all of the details
at once,

The tutorial 1is arranged in layers, starting with the user-
interface, progressing to the logical application of the system, and
finally to the physical organization, or architecture, of the
software network.

Part 1 introduces the GIST Command Language, which, as mentioned
above, provides the most convenient means for accessing processors
and coordinating operations. This part covers everything from
"logging-on®™ to a comprehensive description of every command in the
GIST language,

In Part 2, the application and coordination of the Command Language
to perform general types of structural analysis is first outlined,
and then demonstrated by comprehensive interactive examples. The
correspondence of certain pre/post-processing (i.e., GIFTS)
terminology to certain analysis-phase (i.e., STAGS) terminology is
also noted in this part. Finally, a section on data management is
included, which indicates how the user may play an active role in
maintaining the "database" as the need arises.

Part 3 is for software enthusiasts, prospective co~-developers and
those interested in more than a superficial understanding of the
system., It deals with software architecture, i.e., how the system
is put together and how it may be extended. 1Included here are full
source code listings of the "architectural components", i.e., the
GIFTS~-STAGS Adaptor Modules and the GIST Control Module.

GIST Tutorial / Overview PAGE S

Several Appendices have been included to cover material which is
expected to change rapidly in the near future, but which is
nevertheless important for present utilization: Appendix A
summarizes various GIFTS-STAGS interface conventions which should
eventually disappear (or become transparent) as the system evolves.
Appendix B itemizes the relatively new STAGS Global Database, which
is also scheduled for restructuring. Finally, Appendix C is devoted
to "computer implementation”, and is thus aimed at those individuals
who are blessed with the responsibility of installing and/or
maintaining GIST on a particular operating system. General
guidelines are presented and followed by specific instructions for
dealing with two important systems: VAX/VMS and CDC/NOS.

The following is a summary of recommended supplementary reading:

(1) The GIFTS User's Manual

(2) The GIFTS Primer

(3) The GIFTS System Manual

(4) The GIFTS Pocket Guide

(5) The STAGS User's Manual (Section 6 ...)

(6) The STAGS Theory Manual

(7) The STAGS Example Manual (due to be released)

[TN S Y TregeT gY:
) B El *

¢ o

THE

ACCESS;

GIsT TUTORTIAL

PART 1:

THE GIST COMMAND LANGUAGE

GIST Tutorial / Part 1 PAGE 2
The GIST Command Language

1.0 INTRODUCTION

The user, i.e., the structural analyst, accesses the GIST System via
the GIST Command Language. This is the language used to communicate
with the GIST Control Module, an interactive vantage point from
which all of the basic system components -- pre-processors,
analyzers, post-processors, etc. =-- may be invoked. By issuing
GIST commands, the analyst may systematically direct and monitor the
course of an analysis, performing many tasks on-line, and
dispatching others, e.g., "number-crunchers" for off-line (batch)
processing., Guidance from the Control Module is provided only in
case of logical errors or if explicitly requested, e.g., through the
HELP or REVIEW commands,

In addition to the GIST Command Language, which may be viewed as the
"global" command language, certain processors participating in the
GIST network may have a lanquage of their own, i.e, a ™"local"
command language. This, however, 1is presently confined to the
interactive GIFTS pre~ and post-processors, which are driven in the
GIFTS command language. When the user exits from one of these
processors, control is automatically returned to the Control Module
and communciation resumes in the GIST language.

The "computational" tasks of analysis, which are performed by the
STAGS processors, are interactively prepared, invoked and menitored
from the GIST Control Module, and are therefore entirely within the
domain of the GIST Command Language.

In Part 1, we present the basics of this problem-oriented Command
Language. (The reader is referred to the GIFTS User's Manual (Gl]
for an equivalent treatment of the special command language required
for pre- and post-processing.) The part of the tutorial opens with
instructions for getting on and off of the system, general rules for
entering commands and some examples illustrating the HELP command
(through which much of the present manual may be abstracted
on-line). This is followed by a brief summary of available GIST
commands and their basic functions. Part 1 concludes by expanding
the brief summary into a comprehensive set of command descriptions
arranged in alphabetical order.

The basic information presented in Part 1 will be collected and
integrated in Part 2, where we concentrate on the application of the
command Language to perform interactive nonlinear structural
analysis.

GIST Tutorial / Part 1
The GIST Command Language

1.1 "LOGGING-ON/OFF" AND THE 'JOBNAME'

Suppose GIST has been implemented on your favorite computing system
and you are wondering where to begin. First, look around for an
experienced user; if none is available then continue reading.
After performing your customary log-on procedure, i.e., identifying
yourself to the operating system, you will need to perform a similar
procedure to begin accessing the GIST network. The opening line
will depend on the actual computer operating system and the GIST
implementation (implementors: see Appendix C; users: see your
implementor). For example, on a VAX/VMS computer, one might enter
the following operating system command:

§ @GIST

where $§ is the VAX command prompt; while on a CDC/NOS computer, an
equivalent control statement is:

/ -GIsT

In any case, the net effect is to summon the GIST Control Module
which should respond with the following "splash":

=yt e ——— Y T Y e Y T Y T T Yy Y - o
b+ F t + t + t+ + Tt 3+ £ 1t ¢+ £+ T T 1t ¢+ T 1t ¢+ + £t At P 2 2 At i 2 2 3 P+ 2 i3t + 3 ¢+ 1 3

<<>> GIST <GRAPHICS-INTERACTIVE STRUCTURAL ANALYSIS>

"Welcome to the GIFTS/STAGS Network"

Jobname:

To complete the "log-on" procedure, simply enter the 'Jobname'. The
GIST ‘'Jobname' 1is analogous to the operating system's 'Username'
except that it identifies a particular problem <(or ®"Job") rather
than an individual. Also, it is more arbitrary; any alphanumeric
string not exceeding 8 characters (4 on CDC/NOS) is acceptable.

The important thing to remember is that the Jobname enables both
you, the analyst, and the Control Module to keep track of the
problem from session to session. Thus, by selecting unique
Jobnames, you may process multiple GIST jobs concurrently. (See
Section 2.4 for the relationship of the Jobname to the GIST
database, i.e., file names.)

GIST Tutorial / Part 1 PAGE 4
Section 1.1: Logging~On, etc.

Now suppose you have selected a Jobname, e.g.:

Jobname: DRYRUN
<> New Job

COMMAND | HELP | QUIT
GISTD?>

In the above dialogue, the Control Module has responded to the
user's entry, DRYRUN, with the message 'New Job' and is prompting
for a GIST command.

Congratulations, you are now "logged-on".

The standard 2~line prompt:

COMMAND | HELP | QUIT
GIST?>

will appear frequently. It conveys a double message: First, it
indicates that you are talking to the GIST Control Module; and
second, it reminds you of perhaps the two most important commands in
the language: HELP and QUIT. When in doubt, type HELP (see Section
1.3); when exhausted, exasperated or to excuse yourself, type QUIT.

The QUIT command will "log-you-off" of the GIST network and return
you to the computer operating system, [This is to be distinguished
from the GIFTS pre~ and post—-processing QUIT command which is used
to exit from any of the GIFTS modules and return to the Control
Module.]

To continue the Job at a later time, just repeat the above "log-on"
procedure remembering to use the same Jobname. By default,
everything needed will automatically be saved in the database and
restored at the proper time,

Finally, to permanently end a given Job, and thus clear all disk
space occupied by its database, you may wish to employ the CLEAR
command (discussed in Section 2.4).

GIST Tutorial / part 1 PAGE 5
The GIST Command Language

1.2 RULES FOR ENTERING COMMANDS

All GIST commands share the following general format:

|
|
Command-name [/Qualifiers...] Keyword-phrases [...] |
|
|

where the 'command name' and optional 'qualifiers' are typically '
character strings and a 'keyword phrase' is a simple expresion of
the form:

Keyword = data

where 'keyword' represents a character string and 'data' may be just
about anything depending on the context of the expression. The
keyword phrases define mandatory parameters and/or options
associated with the particular combination of 'command name' and
'qualifiers'.

For example:
STATIC/NONLINEAR INTERVAL=1.,2. STEPSIZE=.l NEWTON=TRUE 3

is a valid command expression. Comparing this with the general H
format, we can identify the basic command components as:

Command name STATIC
Qualifier NONLINEAR
Keyword phrase 2 ... INTERVAL=l.,2,
Keyword phrase 2 ... STEPSIZE=.l
Keyword phrase 3 ... NEWTON=TRUE

Some commands require much less information. For example:

REVIEW STRATEGY

is also a valid command expression. In this case, the command name
is REVIEW, no qualifiers have been selected and the single,
data-less keyword, STRATEGY, specifies the command option.

Thus, each command has its own particular variation, or subset, of
the general command format. Actual command requirements are
presented in later sections. The purpose of this section is to

GIST Tutorial / Part 1 PAGE 6
Section 1.2: Rules for Entering Commands

present some general rules and a compact notation to facilitate the
"interpretation"™ of command requirements.

The following is a list of rules for entering GIST commands from
either an interactive terminal or a peripheral text file:

! ‘ GRAMMAR RULES

5 (R1) All command names and keywords may be abbreviated by truncating
; to a unique shortened form.

For example, the following two statements are equivalent:

® REVIEW SOLUTION
= REV SOL

(R2) A command expression may always be continued on a subsequent line
by appending a double dash (--) to the current line, e.g.:

For example:

GISTD> STATIG/NONLINEAR INTERVAL=1,,2, STEP =-
GIST?> =, N 'ON=TRUE

(R3; Commands which require at least one mandatory keyword will
automatically prompt for keywofds if none are detected.

For example:

COMMAND | HELP | QUIT |
GISTD> STATIC/NONLINEAR ‘

Keywords: INTERVAL STEPSIZE NEWTON [...!]
GIST STATIC > INTERVAL=l, 2. SEEPSIZE=.]

Keywords: INTERVAL STEPSIZE NEWTON (...l
GIST STATIC >

. and so on.

A null response, e.g., pressing <return>, pops the user out of
the keyword prompt mode and back to the command level prompt:

- COMMAND | HELP | QUIT
- GIST?>

I et AR it . o - -

GIST Tutorial / Part 1 PAGE
Section 1.2: Rules for Entering Commands

(R4) Data is always entered in "keyword phrases™, i.e., expressions of
the form: 'keyword = data'. The order of keyword phrases in a
given command expression is arbitrary.

For example, the following two expressions are equivalent:

DYNAMIC INTERVAL=0,,1. METHOD=TRAPEZOID
¢ DYNAMIC METHOD=TRAPEZOID INTERVAL=0.,l.

(RS) Equal signs (=) between keywords and their data are optional; a
. space may be used instead,

| For example, the following two expressions are equivalent:

RESULT SOLUTION=1,4
4 RESULT SOLUTION 1,4

;. (R6) Commas (,) must be used to separate the individual items in a
¥ numeric data list.

For example, the comma in the preceeding example (R5) is required.

(R7) The slash (/) used to separate a command name and its qualifier(s)
is mandatory. Conversely, if no qualifers are used then no
slashes should appear.

. For example, the following expfessions are equivalent:

STATIC INTERVAL=100.,101.
STATIC/NONLIN INTERVAL=100.,101.

since /NONLINEAR is the default qualifier for the STATIC command.

(R8) Spaces must be used to separate any command components which
do not have an alternate separator (such as / or =), Additional
spaces may be used freely,

(R9) Multiple command expressions may be entered on a single line by
separating with a semi-colon (;).

For example, the following expression represents 3 commands:

- CLEAR ANALYSIS; REVIEW JOB; HELP ANALYSIS

— gt o L

1
GIST Tutorial / Part 1 PAGE 8 ~
Section 1.2: Rules for Entering Commands

(R10) Comments may be appended to command expressions by inserting an :
isolated period (.) between the command and the comment.

Everything to the right of the period will be ignored by the
command interpreter.

For example:

DYNAMIC INTERVAL=0.,l. . Compute transient response
D DYNAMIC STEPSIZE=.00l . Dt governed by load history
COMPUTE/BATCH QUEUE=HUGE . This may take some time ...

represents a sequence of commented GIST commands.

i - e e -

GIST Tutorial / Part 1 PAGE 9
The GIST Command Language

1.3 THE 'HELP' COMMAND

One of the best ways to learn, or freshen-up on, the GIST Command
Language is to use the HELP command, frequently. The basic form of
the command is:

. GIST)> HELP

which provides the following general information:

Help on a particular GIST command or topic may be obtained via:
HELP Name Subname

where 'Name' is either a valid command or topic and 'Subname' is
typically an associated command qualifier, keyword or subtopic.

Available commands:

i DYNAMIC EDITLB EDITM HELP JOBNAME MANAGE
; QUIT RESULT REVIEW SETUP STATIC VIBRATION

Available topics:
OVERVIEW

LANGUAGE PREPROCESSING ANALYSIS POSTPROCESSING EXAMPLES

I
|
i
|
!
{
!
|
{
i
BUCKLING BULKLB BULKM BULKS CLEAR COMPUTE !
|
!
!
!
|
!
!
|
DATABASE I

!

ot
— e . —— . —— — e ——— . —— A — — —— — — t— — S T —

‘ As you can see, the entire command menu is displayed, plus a set of
key topics, Now, by wusing the more specific form of the HELP
command:

GIST?> HERP Name

you may obtain information on any of the individual commands or
topics displayed above.

]
i

For example:

GIST> HELP STATIC

produces a brief (screen-size) description of the STATIC command and
- lists command qualifiers and keywords under which additional
information is available.

e ———— ‘

GIST Tutorial / Part 1 PAGE 10
Section 1.3: The HELP Command

Similarly:

GIST> HELP EXAMPLE
displays the introduction to a GIST example problem and 1lists
subtopics under which the details of the analysis, i.e., the command
input stream, may be presented.

To obtain information on a command qualifier, command keyword, or
subtopic, use the most explicit form of the HELP command:

GIST?> HELR Name Subname

For example:

GIST?> HELP STATIC/NONLINEAR
describes the /NONLINEAR form of the STATIC command, while:

GIST?> HELR STATIC INTERVAL

* explains the significance of the keyword phrase,
INTERVAL=pamin,pamax.
Similarly:

GIST?:> HELP EXAMPLE PARTI1

continues the presentation of the GIST example introduced under HELP
EXAMPLE.

The "nested" structure of the HELP command facilitates a concise
user/system dialogue, which becomes more and more desirable as the
user gains experience. Note, however, that by systematically
requesting HELP on each of the existing commands, topics, etc., a
condensed version of the GIST Manual is available on-line.

Rerirk

The GIFTS pre- and post-processors also feature a HELP command, but

it has a slightly different format than the GIST command described

above. To obtain help from "within" a GIFTS processor, use the form:
HELP /Topic/

where 'Topic' may be the name of any GIFTS processor or GIFTS command.

b

GIST Tutorial / part 1 PAGE 11 -
The GIST Command Language

1.4 COMMAND SUMMARY

The following table includes every command in the GIST language. Next to-

the brief functional description 1is a 3-character label that indicates

with which phase of structural analysis the command is most closely

associated. A complete description of each command may be found in |

Section 1.5. For guidance and examples on the integrated application of
’ these commands to structural analysis consult Part 2 of this tutorial.

. | Command | Function | Phase |
;ﬁ) | BUCKLING I- Prepares strategy for a STAGS b;;;I:;;-;;;;;;:;:T--gﬁg--T
- | BULKLB | 1Invokes the GIFTS bulk load and b.c. generator. | PRE |
- | BULEM | Invokes the GIFTS bulk model gemerator. eRE |
| ciEAm | Erases all or part of the current Job Dacabase. | AUX |
. | COMPUTE | Invokes the STAGS "structaral amalyzer®. A
| DTNAMIC | Prepares scrategy for a STAGS dynamic amalysis. | ANA | |
| E0ITLB | Invokes the GIFTS load and b.c. display editor. | PRE |
| | EpITM | Invokes the GIFTS model display editer. eRe |
| | RELE | Displays information on GIST commands/topics. | AUX |
; | INPUT | GIST "on-line batch® command switch Aok 1
: MANAG; : Invokes-;;;-;; the syst;m database ";a;;ors” ---:-—ZEE'-:
: QUIT --: Terminates the current G;;; sess;;;: ------------ :--;5;--:
: RESULT : Dlsplay;-;Il so;;tio;-quantities, spa;:;II;:----:--;ag--:
T e s e s |
| SETUP | Invokes the STAGS "pre-analysis" procedure. | ANA |
| STATIC | Prepares strategy for a STAGS static analysis. | ANA |
. I VIBRATION | Prepares strategy for a STAGS vibration analysis| ANA |
where:

PRE => Pre-processing
- ANA => Analysis
- POS => Post-processing
AUX => Auxiliary

i

GIST Tutorial / Part 1 PAGE 12
The GIST Command Language

1.5 COMMAND DESCRIPTIONS

This subsection contains detailed descriptions of each GIST command. The |
commands are listed in alphabetical order, with the command name appearing |
at the top of the first and every page of the individual command
description.

Before proceeding with the command descriptions, we introduce the
following set of notational conventions which will be used throughout.
The notation also appears in the displays produced by the HELP command,
and in Control Module prompting messages:

Notatjon for Gommand Descriptjons

o Upper-case words are to be taken literally, i.e., entered as
part of the command. Lower-case words are not to be taken
literally. They are to be replaced with an appropriate name, number
or array.

o) To distinguish between "numeric" replacement and ;
"alphanumeric" replacement, check the first letter of the word. If |
the first letter is lower-case, a numeric value is expected. If the
first letter is upper-case and the rest of the word is.lower case, a
name 1s expected.

o Square brackets [1 indicate that the enclosed items are
optional. The brackets are not to be entered as part of the
command.

0 Curly brackets { } indicate that at least one of the
enclosed items should be selected. The brackets are not to be
entered as part of the command.

o A vertical bar | 1is used to separate items which are
mutually exclusive. The bar should not be entered as part of the
command,

GIST Tutorial / Part 1 PAGE 13

The GIST Command Language

1 BUCKLING

Function

. Defines strategy for a "bifurcation buckling"™ analysis to be
performed about either a linear or nonlinear prestress state.

4 This is an eigenvalue analysis in which the results represent

b "sritical load" factors and corresponding displacement modes.

=y Strategy parameters are 8aved in the global database for
. subsequent review and may be selectively revised without

changing all previous settings. Once the strategy is
g complete, computation is initiated via the COMPUTE command
‘ which invokes the STAGS structural analyzer.

Formats
BUCKLING [(/LINEARI] { PRELOAD = pa, [pbl
MODES = maxnum
RANGE = eigmin, eigmax
SHIFT = eigshift
MAXERR = tolerance

LIST (/Items] = switch
SAVE [/Items] = switch

[Ry Vg O g P)

BUCKLING /NONLINEAR { PRESTEP = stepnum
MODES = maxnum
[... same options as /LINEAR] '}
Qualifjers
/LINEAR (default)
Indicates that the buckling analysis is to be performed
with respect to a linear pre-stress state.

/NONLINEAR

. Indicates that the buckling analysis is to be performed
- with respect to a "previously computed” nonlinear
prestress state.

A1 -t i s

b s Akt b D0 4o {8

T e

g

1 4

BUCKLING

GIST Tutorial / Part 1 PAGE 14
Section 1.5: Command Descriptions -- BUCKLING

KQ!WOIQS

BUCKLING

PRELOAD
The keyword phrase:
PRELOAD = pa [,pbl

specifies the linear pre-buckling load factors corresponding
to load systems A and B (or 1 and 2) respectively.

The resulting eigenvalues are to be interpreted as critical,
(i.e., buckling) load factors according to the following
expression:

{Plcrit = -eigenvalue * pa * {Pla + pb * {P}b

where {Plcrit represents the critical load vector.

BUCKLING

PRESTEP
The keyword phrase:
PRESTEP = step

specifies the number of the load {or time) step corresponding
to the nonlinear pre-buckling configuration. It is assumed
that the displacement vector at this particular step has
already been computed and saved.

MODES
The keyword phrase:

MODES = maximum

specifies the maximum number of eigenvalues/eigenvectors
(i.e., critical load-factors/modes) to be computed. The
eigenvalues are extracted in order of increasing absolute
value starting with the smallest, unless otherwise specified
via the SHIFT or RANGE keywords.

allhGitt. aaiaet L atvesradsi
J ¢

GIST Tutorial / Part 1 PAGE 15
Section 1.5: Command Descriptions -- BUCKLING

BUCKLING
RANGE

The [optionall keyword phrase:
RANGE = eigmin,eigmax
specifies the lower and upper bounds of the eigenvalue interval.
The eigenvalues are then extracted in order of increasing
distance from the center of the interval. The first eigenvalue
will therefore be the one closest to 'eigcen' where:
eigcen = (eigmin + eigmax) / 2

The computation automatically terminates when all eigenvalues
within the specified interval have been determined, up to the
'maximum' set by MODES.

Default: RANGE = 0.,,0.

BUCKLING
SHIFT

The (optionall keyword phrase:

SHIFT = target
specifies an initial eigenvalue shift, i.e., a target value.
The eigenvalues (and corresponding modes) are then extracted
in order of increasing distance from the shift value, up to
the maximum number specified by MODES.
Default: SHIFT = 0,

Note: This option is superceded by the RANGE option.

BUCKLING
' MAXERR

The (optionall keyword phrase:

MAXERR = tolerance
specifies the convergence criterion to be used for eigenvalue
extraction, The value ‘'tolerance' represents the maximum

acceptable relative error in each requested eigenvalue (as
measured over two successive iterations).

Default: MAXERR = 1.E-5

GIST Tutorial / pPart 1 PAGE 16

Section 1.5: Command Descriptions =-- BUCKLING

BUCKLING
LIST

The [optionall keyword phrase:
LIST(/Items] = switch

indicates what is to be listed during the subsequent solution
interval., valid 'Item's are:

I (Intermediate iteration data)

D (Displacement modes)
Otherwise, all of the above are assumed.

The value 'switch' must be either: 0 => No list
or: 1 => List

Defaults: LIST/I = 1 LIST/D = 0

The default settings are recommended for interactive use, since
the bulk of the solution may be reviewed during postprocessing.

BUCKL ING
SAVE

The [optionall] keyword phrase:
SAVE [/Item] = switch

indicates which results are to be saved (i.e, archived) during
the subsequent solution interval. Valid 'Item's are:

D (Pre-buckling displacement vector)

M (Buckling mode vectors)
Otherwise, all of the above are assumed.

The value ‘switch' must be either: 0 => no archival
or: 1 => archive

It is recommended to save solution vectors for potential post-
processing and/or analysis continuation. [See HELP DATABASE]

Default: SAVE = 1

o,

GIST Tutorial / Part 1 PAGE 17
Section 1.5: Command Descriptions

Fungtion

Invokes the GIFTS "Bulk Load and Boundary Condition Generator"
of the same name.

BULKLB is a bulk load and boundary condition generator designed
to apply 1loads and constraints to those portions of a model
generated with BULKM, e.g., at key points, distributed along key
lines, or distributed over surface grids. It may be used to
apply distributed line, surface and inertial 1loads, prescribed
displacements along 1lines and surfaces, simple Lagrangian
constraints along 1lines and surfaces, as well as 1initial
conditions (displacements and velocities) for an ensuing dynamic
analysis.

Format

BULKLB

Qualifiers

None.

Keywords

None.

Remarks

GIFTS processors are driven by the GIFTS Command Language. Help
is available from within the processor by entering the GIFTS
command,

HELP /topic/

where 'topic' is the name of either a GIFTS processor or of a
GIFTS command. To exit from the processor, use the GIFTS
command: QUIT.

F>r comprehensive information, including examples, on any of the
GIFTS processors, consult the GIFTS references listed at the end
of this manual. For a sample of GIFTS utilization in a GIST
analysis, refer to Section 5 herein.

GIST Tutorial / Part 1 PAGE 18
Section 1.5: Command Descriptions

BULKM
Function
i Invokes the GIFTS "Bulk Model Generator” of the same name.

BULKM 1is an automatic model generation processor with
corresponding graphics capabilities. It is suitable for large,
three dimensional beam, plate and shell type structures that can
be easily modeled by repetitious generation of points and
elements. Plotting is limited to the overall geometric features
of the model, including key points, lines and grid boundaries
(the mesh is suppressed). Once the "bulk"™ of the model has been
defined with BULKM, a complementary processor: EDITM, is
recommended for detailed, element-oriented verification,
revision, and extension.

Format

BULKM

Qualifiers

None.

; Reywords

None.

Remarks

[GIFTS processors are driven by the GIFTS Command Language. Help
{ is available from within the processor by entering the GIFTS
command,

P HELP /topic/

. where 'topic' is the name of either a GIFTS processor or of a
. GIFTS command. To exit from the processor, use the GIFTS
‘ command: QUIT.

For comprehensive information, including examples, on any of the

GIFTS processors, consult the GIFTS references listed at the end
- of this manual, Por a sample of GIPTS utilization in a GIST
- analysis, refer to Section S herein.

GIST Tutorial / Part 1 PAGE 19
Section 1.5: Command Descriptions

Function]
' Clears all or part of the current GIST Job.

3 The CLEAR command may be used to clean-up after completing or
h falsely starting an analysis; to erase either the model or the
. solution without forfeiting the other; or to simply reset
P various global parameters.

e

T Format

= CLEAR { JOB | PREP | ANALYSIS | POST | BATCH } ‘

» Qualifiers ~

None.

GIST Tutorial / Part 1 PAGE 20
Section 1.5: Command Descriptions -- CLEAR

Keywords
CLEAR JOB
Erases ALL of the current GIST Job. All files associated
2 g with the global database are automatically deleted. To begin
N work on a fresh Job, the analyst must QUIT and "log-on®" again.
! CLEAR PREP

L]
C s b

Deletes the "pre-processing database" associated with the current
L Job., Note: this eliminates the GIFTS model definition and thus
- precludes any further GIFTS postprocessing of solution data. 1If
no solution data exists, this form of the command has the same
effect as: CLEAR JOB.

CLEAR ANALYSIS -

Deletes the "analysis database™" associated with the current Job,
but leaves the "pre-/post-processing database" unscathed.

CLEAR STRATEGY

Erases the current solution strategy and resets all optional
parameters to their default values.

CLEAR BATCH

Unlocks the "analysis database" for interactive access.

i ' wWhenever a batch run is launched (via the COMPUTE or SETUP)

? commands, the analysis database is automatically locked for
batch utilization. The analyst must therefore monitor all
pending batch runs associated with the current Job manually,

. i.e., through the computer operating system, and CLEAR BATCH
- only when all such runs have reached a conclusion.

GIST Tutorial / Part 1 PAGE 21
Section 1.5: Command Descriptions

Function
’ Invokes the STAGS "structural analyzer" (STAGS2) to compute a
solution interval based upon the currently defined solution
strategy.

This is the "go-button" for analysis computation. It is
unlocked only after the strategy for the next solution interval
has been completely defined via the STATIC, DYNAMIC, BUCKLING or
VIBRATION commands. The computation may be performed either on-
or off-line by selecting the appropriate qualifier.

Formats
COMPUTE [/INTERACTIVE] [OUTPUT=Filename]

COMPUTE /BATCH QUEUE=Qname [MAXCOR=size 1 [OUTPUT=Filename]

Qualifiers
/INTERACTIVE (default)

Indicates that the computation is to be performed

"on-line"; i.e., monitored from the analyst's
; interactive terminal. This mode of operation is

recommended for "test" cases and preliminary studies.

/BATCH

Indicates that the computation is to be performed
"off-line". The structural analyzer is submitted to a
batch queue where it will await execution. The analyst
may continue to interact with GIST although restricted
from the "analysis database"” until the batch process
has reached its conclusion. This mode of operation is
i recommended for more realistic problems which are
l . either too large or too long to be run at high priority
. from a dedicated computer terminal.

GIST Tutorial / Part 1
Section 1.5: Command Descriptions -~- COMPUTE

Keywords

COMPUTE
QUEUE

. The keyword phrase:
QUEUE = Qname

specifies the name of the "batch queue® to which the processor
is being sent as a "batch run".

Choices currently available are:

{ FAST | NORMAL | LONG | HUGE }

COMPUTE
MAXCORE

The (optionall keyword phrase:
MAXCORE = pages

specifies the maximum number of "pages" (128 blocks on VAX/VMS)
to be used for central processing.

Default: MAXCORE = 300

COMPUTE
OUTPUT

The (optionall keyword phrase:
OUTPUT = Filename

specifies the name of a permanent disk file to which the output
of the following interactive/batch process is to be disposed.

Filename conventions are those of the host operating system

Default: For interactive runs, the terminal;
For batch runs, the "LOG" file.

GIST Tutorial / Part 1 PAGE 23
Section 1.5: Command Descriptions

DYNAMIC

Function

Defines strategy for a "dynamic response®™ analysis involving
either linear or nonlinear geometric and/or material behavior.

Strategy parameters are saved in the global database for
subsequent REVIEW and may be selectively revised without
changing all previous settings. Once the strategy is complete,
computation is initiated via the COMPUTE command which invokes
the STAGS structural analyzer.

LEMa

DYNAMIC [/NONLINEAR] { INTERVAL = tmin,tmax
STEPSIZE = dt
METHOD = Name
NEWTON = Type [(,freql
HISTORY = Shape,values
[START = Type [,step]]
[DAMPING = alpha,beta,gamma].
{ MINDTS = mindts]
[MAXDTS = maxdts]
[MAXERR = maxerr 1
{ LIST (/Item] = switch 1
[SAVE [/Item] = switch 1 1}
DYNAMIC /LINEAR (same as nonlinear excluding NEWTON)

Qualifiers

/NONLINEAR (default)

Indicates that the dynamic analysis is to account for
nonlinear effects such as "moderately" large rotations
and elastic-plastic material behavior.

/LINEAR

Indicates that the dynamic analysis is to be strictly
linear. This limits its validity to problems in which
displacements are "infinitesimal™ and deformations are
"elastic",

*t—-—————-—-—-————————-—-—_——l

GIST Tutorial / Part 1 PAGE 24
Section 1.5: Command Descriptions -- DYNAMIC

Keywords

DYNAMIC
INTERVAL

The keyword phrase:

INTERVAL = tmin, tmax

amorr =

; . specifies the solution interval in terms of the independent

Y variable, time ('t') A dynamic analysis usually begins with

. 'tmin' set to 0. and 'tmax' set to some value of 't' at which

‘ the analysis is to be interrupted for evaluation and/or change

4 of strategy. For subsequent solution intervals, i.e. restarts,

E 'tmin' should correspond to a pre-computed (and archived) time
step. [See HELP DYNAMIC STEPSIZE]

DYNAMIC
STEPSIZE

The keyword phrase:
STEPSIZE = dt

specifies the time increment to be used in the traversal of
. the forthcoming solution interval (see HELP DYNAMIC INTERVAL).
b Thus, assuming 'dt' remains fixed within the interval, the

number of "solution steps" (computed configurations) should be:

nsteps = (tmax-tmin)/dt !

[solution steps are automatically assigned numbers 0,1,2,...

starting with the initial conditions and proceeding "through" ,
all subsequent solution intervals. These numbers provide a i
convenient indexing system for postprocessing reference.)

. DYNAMIC
METHOD

The keyword phrase:

METHOD = { EXPLICIT | TRAPEZOIDAL | GEAR | PARK !}

specifies the time integration method to be used on the spatially
discretized equations of motion. The choices corresyond to:

GIST Tutorial / Part 1 PAGE 25
Section 1.5: Command Descriptions -- DYNAMIC

EXPLICIT Explicit Central Difference Method j
TRAPEZOIDAL Trapezoidal Rule

GEARcc..... Gear's 2nd-order Method
PARK ..¢ec0s00s.. Park's 2nd-order Method

DYNAMIC “
NEWTON =

The keyword phrase:

NEWTON = { TRUE | MODIFIED,freq | SELECTIVE,max | FALSE }
specifies the "linearization" algorithm to be used for nonlinear
analysis. All of the above choices are variations on the gener-
alized Newton-Raphson procedure with the following distinctions:

TRUE The "tangent stiffness" matrix is formed and re -
factored upon every iteration of every time step.

MOD,freq ... The matrix is formed and refactored only at the
beginning of every 'freq' th time step.

SEL,max The matrix is formed and refactored selectively
(by the analyzer) up to a maximum of 'max' times.

FALSE The matrix is formed and factored only at the be-
ginning of the soldtion interval.

DYNAMIC |
HISTORY

The keyword phrase:
HISTORY [(/A/Bl] = { LIN | EXPO | TRIG }, values]

specifies the "load amplitude history™ for subsequent dynamic
solution intervals. This may be changed as often as necessary.
The qualifier /A or /B corresponds to the load system, and the
array 'values' specifies the load factor as a function of time
according to the load shape {...}.

> - LIN Piecewise linear load-time function

EXPO Exponentially decaying load-time function

GIST Tutorial / Part 1
Section 1.5: Command Descriptions -- DYNAMIC

TRIG Trigonometric load-time function.

* See Subsection 2.2.2 for the precise definition of 'values’.

DYNAMIC

START
The [optional] keyword phrase:
START = { NEW | NEXT | FROM step }
specifies the starting conditions for the solution interval:
NEW Start from initial conditions.
NEXT Simple analysis continuation. Use the current,
i.e., last-obtained, solution step as a starting

approximation for the next logical solution step.

FROM step ... Recompute an earlier solution interval using step
number 'old' as a starting approximation.

Default: START = NEXT

DYNAMIC

DAMPING
The [optionall keyword phrase: 4

DAMPING = alpha,beta,gamma
specifies the amount of "structural damping” to be included in
the dynamic analysis. Each of the above coefficients correspond
to a different source of velocity-dependent forces:

{f}v-d = alpha*(M]{v} + beta*(Kl{v} + gamma*[D]{v}

where: (M] = mass matrix
[RK] = stiffness matrix or operator
(D] = diagonal damping matrix (defined with loads)
{v} = structural velocity vector
{f} = internal force vector

PAGE 26

GIST Tutorial / Part 1 PAGE 27
Section 1.5: Command Descriptions -- DYNAMIC

DYNAMIC
MINDTS

The [optionall] keyword phrase:
MINDTS = nmindts

specifies the limit for automatic stepsize decreases in the sub-
sequent solution interval. The minimum possible value of 'dt'
will then be:

dtmin = mindts * dt

where 'dt' is specified with the STEPSIZE keyword. 1If ‘'mindts'
is set equal to 1.0, no decreases in stepsize will be engendered.

Default: MINDTS = 1.0)

DYNAMIC]
MAXDTS _

The [optionall keyword phrase:
MAXDTS = maxdts

specifies the limit for automatic stepsize increases in the sub-
sequent solution interval. The maximum possible value of 'dt'
will then be:

dtmax = maxdts'* at

where 'dt' is specified with the STEPSIZE keyword. If 'maxdts’
is set equal to 1.0, no increases in stepsize will be engendered.

[NOTE: Stepsize increases may inadvertently destroy the analyst's
representation of the applied load history.]

Default: MAXDTS = 1.0 4

DYNAMIC
MAXERR

The {optional] keyword phrase:
MAXERR = tolerance

specifies the convergence criterion to be used for the nonlinear
iteration., The value 'tolerance' represents the maximum accept-
able relative error in either displacement or force (residual)

L nd

N LIST (/item] = switch

#

GIST Tutorial / Part 1 PAGE 28 |
Section 1.5: Command Descriptions -- DYNAMIC

vector norms. Up to 12 iterations may be performed to meet this
criterion, but less will be used if convergence appears unlikely.

Default: MAXERR = ,001

» DYNAMIC i
LIST :

The [(optionall keyword phrase:

indicates what is to be listed during the subsequent solution 5:
interval. 'Item' may be any of the following:

D (Displacements and Velocities)
R (Stress resultants) ;
S (Stresses) i
E (Strains) i 4
F (Residual forces: {Fextl! - [Ml{al) -
Otherwise, all of the above are assumed.

The value 'switch' may be: 0 => No list
or: >0 => List every 'switch' load steps

Default: LIST = 0 (No results listed until postprocessing)

DYNAMIC g
SAVE

The [optionall keyword phrase:

SAVE {/Item] = switch

indicates which results are to be saved (i.e, archived) during

' the subsequent solution interval. Valid 'Item's are:

D (Displacements,velocities,accelerations,etc.)
S (Stress sets (stresses,strains,resultants))
F (Residual forces)

: K (Assembled stiffness matrix)

Otherwise, all of the above are assumed.

The value 'switch' may be: 0 => no archival
or: >0 => archive every 'switch' steps

It is recommended to save solution vectors for potential post-
processing and/or analysis continuation. [See HELP DATABASE)

Default: SAVE/D =] SAVE/S =]

= e T e g ——; s

ik oadl i)
'

i, ZA

,-., “‘_‘~¥rﬂ:l,_“m

GIST Tutorial / Part 1 PAGE 29
Section 1.5: Command Descriptions -~ DYNAMIC

Function

Invokes the GIFTS "Load and Boundary Condition Editor"™ of the
same name.

EDITLB is a display and edit processor intended to provide local
modification capability for 1loads, boundary conditions, etc.
applied with BULKLB., It may also be used to apply simple, e.q.,
non-distributed loads and boundary conditions on models
generated with BULKM and/or EDITM. It may be used to
graphically verify all aspects of 1loading and initial
conditions.

Format

EDITLB

Qualifiers

None.

Keywords

None.

Remarks

GIFTS processors are driven by the GIFTS Command Language. Help
is available from within the processor by entering the GIFTS
command,

HELP /topic/

where 'topic' is the name of either a GIFTS processor or of a
GIFTS command, To exit from the processor, use the GIFTS
command: QUIT.

For comprehensive information, including examples, on any of the
GIFTS processors, consult the GIFTS references listed at the end
of this manual. For a sample of GIFTS utilization in a GIST
analysis, refer to Section 2.5 herein.

GIST Tutorial / Part 1 PAGE 30
Section 1.5: Command Descriptions

Function

. Invokes the GIFTS "Model Editor” of the same name.

EDITM is a model editor designed primarily to correct, update
and verify models generated with BULKM. However, it may also be
used to define entire models, or subregions, which are not
suitable for automatic generation. EDITM has extensive plotting
capabilities which include node, element, material and thickness
labeling options, as well as detailed illustrations of both the
mesh and of local beam cross-sectional properties. Numerical
data on. all aspects of the model is also available in tabular
form upon command.

Format

EDITM

Qualifiers

None.

Keywords

None. d

Remarks

GIFTS processors are driven by the GIFTS Command Language. Help
is available from within the processor by entering the GIFTS
command,

HELP /topic/

where 'topic' is the name of either a GIFTS processor or of a
. GIFTS command, To exit from the processor, use the 'GIFTS
. command: QUIT.

For comprehensive information, including examples, on any of the
GIFTS processors, consult the GIFTS references listed at the end
of this manual. For a sample of GIFTS utilization in a GIST
analysis, refer to Section 2.5 herein.

GIST Tutorial / Part 1 PAGE 31
Section 1.5: Command Descriptions

- s o o
3

Function

Provides information on all available GIST commands and general
system utilization.

Format

HELP [Name) [Subname] 3

Qualifiers

None.

e e

Reywords

'Name' may be any valid GIST command or topic name for which
specific information is desired.

'Subname' may be any command component, i.e., qualifier or
keyword, (or subtopic) associated with the command (or topic)
specified by 'Name.

Notice that both 'Name' and 'Subname' are optional. If neither
is specified, a general listing of all available commands and
topics is presented. .

Exam]

1. G IS T)> HELP DYNAMIC

The HELP command displays a general description of the
DYNAMIC command including its function, format, and
qualifiers and keywords for which there is more infor-
mation available,

2. GIST)> HELP DYNAMIC/NONLINEAR

The HELP command displays specific information on the
/NONLINEAR form of the DYNAMIC command.

3. GIST> HELP DYNAMIC METHOD

The HELP command displays specific information on the
DYNAMIC keyword: METHOD.

GIST Tutorial / Part 1 PAGE 32
Section 1.5: Command Descriptions

MANAGE
Function
. Invokes any of the GIST system's interactive database editors.

. Presently, GIST employs two special database managing
1 processors; one for the (GIFTS) pre- and post-processing
3 databases and one for the (STAGS) analysis database. These are
intended for advanced users only. They provide a utility for

, performing detailed database maintenance and editing operations,
' which are usually only required when the database becomes either
., excessively large or of questionable integrity. Some

information on the usage of the GIST database editors is
provided in Section 2.4, but the primary documentation is to be
found in references [G3] and [N41l.

MANAGE { GIFTS | STAGS !}

Qualifiers

None.

Reywords

- MANAGE GIFTS

Invokes the GIFTS database "editor"™, called DUMP. This processor
is not an editor, per se, but rather a comprehensive data-listing
utility for those files comprising *he pre- and post-processing
databases (see Section 2.4 and [G3]).

MANAGE STAGS

; Invokes the STAGS database editor, called CLAUDE. This processor
; , does not belong to the STAGS family. It is a member of the NICE
. [N1] architecture library. Thus, it may be used to interactively
manipulate any files which are of the so~-called "DAL" or "GAL"
variety. The STAGS 'STG' file, which is the principal member of
the analysis database, fits into the former category (see Section
2.4, Appendix B, [N2] and [N41).

GIST Tutorial / Part 1 PAGE 33
Section 1.5: Command Descriptions

Function
Terminates the current GIST gession.
QUIT is a harmless command used to "log-off" of the GIST

network. It neither creates nor destroys anything of importance |
in the database.

Format
QuUIT

Qualifiers

None.

Keywords

None,

Remarks

GIFTS processors, e.g., BULKM, EDITM, etc. also feature a QUIT
command. Do not confuse the- GIST command with the GIFTS
command, Unlike the GIST' QUIT command, the GIFTS' QUIT command
does update the global database, and then subsequently transfers
control back to the GIST Control Module. Thus, in order to
"log-off" of the GIST network from within say BULKM, one would
enter the command QUIT twice: once (as a GIFTS command) to exit
from BULKM, and then again (as a GIST command) to leave the
network,

GIST Tutorial / Part 1 PAGE 34
Section 1.5: Command Descriptions

RESULT
Function
* Invokes the GIFTS "result-display" processor of the same name,

and automatically precedes it with the STAGS->GIFTS (solution->
postprocessing) “adaptor",

! - RESULT may be used to display or tabulate the "physical"
- solution response at specific 1load- or time-steps, i.e.,
!) spatially. Display capabilities include deformed geometry,
. stress contours, element- coded stress levels, and principal
stress directions. Numerical values may be selectively 1listed
by node or element. Any sequence of pre-computed STAGS
solutions may be processed in a single RESULT session by using
the appropriate form of the command.

Formats
RESULT (/NEW] SOLUTION = stepl [,step2,increment]

RESULT /OLD

Qualifiers
/NEW (default)

Indicates that a new selection of solution steps is to
be extracted from the analysis database for
postprocessing. All available STAGS displacements,
velocities, modes, stresses, strains, etc.
corresponding to the selected steps will be transferred
to the GIFTS postprocessing database. NOTE: This
operation is not cumulative, i.e., the postprocessing
database is always "erased" before anything from the
analysis database is transferred. Thus, it may be
necessary to specify the same step numbers on more than
one occasion,

X /OLD

Indicates that no new solution steps are to be
extracted from the STAGS database for GIFTS
postprocessing. In this case, the STAGS-~> GIFTS
"adaptor" is bypassed and the analyst may directly
resume postprocessing the "old", i.e., left-over,
solutions,

i ‘1-'-ﬂﬁ-l!I-ﬂnnlhu--I-I-Hndnﬁnn-u-nnn-u-nﬁu-ﬁ-—nﬁﬁudl-IIﬂII-Ihu-uui“

GIST Tutorial / Part 1
Section 1.5: Command Descriptions -- RESULT

Keywords

RESULT
SOLUTIONS

The keyword phrase:
SOLUTIONS = stepl ([,step2,incrl

specifies a sequence of solution steps to be extracted from
the analysis database and prepared for postprocessing. The
first step to be extracted (assuming it is present) will be
'stepl', the last step 'step2', and the step increment will
be 'incr'. 1If not specified, 'step2 = step2' and 'incr = 1°'.
Inside RESULT, the solution steps will be referred to as
"load-cases" and numbered consecutively as 1,2,...n, where
'n' is the total number of solution steps actually transfer-
ed by the current RESULT [/NEW] command.

Remarks

PAGE 35 -

GIFTS processors are driven by the GIFTS Command Language. Help
is available from within the processor by entering the GIFTS

command,
HELP /topic/

where 'topic' is the name of either a GIFTS processor or of

a

GIFTS command. To exit from the processor, use the GIFTS

command: QUIT. ‘

For comprehensive information, including examples, on any of the
GIFTS processors, consult the GIFTS references listed at the end
of this manval. For a sample of GIFTS utilization in a GIST
analysis, refer to Section 2.5 herein.

GIST Tutorial / Part 1 PAGE 36
Section 1.5: Command Descriptions

D e e a0 o o - o

REVIEW

Function

Provides feedback on all aspects of a GIST analysis.
The REVIEW command may be used to obtain current information on

general Job status, model statistics, solution statistics,
solution strategy and the contents o0f the database.

Formats
REVIEW { JOB | PREP | ANALYSIS | STRATEGY | SOLUTION }

REVIEW /TOC { JOB | PREP | ANALYSIS | POST 1}

Qualifiers 1
/TOC |

Provides a database "table-of-contents".

gl et uii i R ot il Kt i

GIST Tutorial / Part 1 '
Section 1.5: Command Descriptions -- REVIEW

Reywor

REVIEW [/Qualifier] JOB

Reviews the general status of the current GIST "Job", or
] for /TOC, summarizes the files comprising the Job database.

REVIEW (/Qualifier] PREP

Reviews the status of the current GIST model, or, for /TOC,
summarizes the files comprising the "pre-processing database".

REVIEW [/Qualifier] ANALYSIS

Reviews the status of the current GIST analysis, or, for /TOC,
summarizes the "data-sets" comprising the "analysis database"”.

REVIEW (/Qualifier] SOLUTION [=stepl,step2,incl

Reviews the status / computational-statistics of solution
steps 'stepl’' thru 'step2'. If no steps are specified, the
current, i.e., last computed, step is reviewed.

REVIEW STRATEGY

Reviews the current solution strategy showing the values of

all parameters and indicating which parameters are undefined.

This form of the command may be used in alternating fashion

v with the strategy definition commands (e.g., STATIC, DYNAMIC)
{ to verify each parameter as it is specified.

W e g (AT

!

GIST Tutorial / Part 1 PAGE 38
Section 1.5: Command Descriptions

Function

Invokes the STAGS "pre-analyzer" (STAGSl) and automatically

precedes it with the GIFTS->STAGS (pre-processing -> analysis)
*adaptor".

SETUP is required at the transition between the pre-processing
phase and the analysis phase of a Job. It should be employed
only after the model, loads, bcs, etc. have been completely
defined, and need not be repeated unless pre-processing
definitions are subsequently updated. The STAGS pre-analyzer
and its role in the overall solution process is discussed in
Section 2.2. The important thing to remember is that it sets
the stage for all forms of solution strategy and computation
involving the STAGS analyzer.

Formats

SETUP [/INTERACTIVEI [OUTPUT=Filename]

SETUP /BATCH QUEUE=Qname [MAXCOR=size 1 [OUTPUT=Fi1ename]

/INTERACTIVE (default) '
Indicates that the SETUP procedure is to performed

"on-line", i.e., monitored from the analyst's
interactive terminal.

/BATCH

Indicates that the SETUP procedure is to be performed
*off-line". The adaptor / pre-analyzer runstream is
submitted to a batch queue where it will await
execution, The analyst may continue to interact with
GIST although restricted from the "analysis database"
until the batch process has reached its conclusion.

GIS. Tutorial / Part 1 PAGE 39
Section 1.5: Command Descriptions =-- SETUP

Keywords

SETUP
QUEUE

¢ The keyword phrase:
QUEUE = (Qname

specifies the name of the "batch queue" to which the processor
is being sent as a "batch run".

Choices currently available are:

{ FAST | NORMAL | LONG | HUGE }

SETUP
MAXCORE

The [optionall keyword phrase:
MAXCORE = pages

specifies the maximum number of "pages"™ (128 blocks on VAX/VMS)

to be used for central processing. j
Default: MAXCORE = 300 ‘
?
SETUP
OUTPUT i

The [optionall] keyword phrase:
OUTPUT = Filename

specifies the name of a permanent disk file to which the output
of the following interactive/batch process is to be disposed.

Filename conventions are those of the host operating system

Default: For interactive runs, the terminal;
For batch runs, the "LOG" file.

GIST Tutorial / Part 1 PAGE 40
Section 1.5: Command Descriptions

Function

. Defines strategy for a "static response" analysis involving
either linear or nonlinear geometric and/or material behavior.

Strategy parameters are saved in the global database for
subsequent review and may be selectively revised without
changing all previous settings. Once the strategy is complete,
computation is initiated via the COMPUTE command which invokes
the STAGS structural analyzer.

Formats

STATIC (/NONLINEARI INTERVAL= pamin, pamax [,pbmin,pbmax]
STEPSIZE= dpa (,dpbl

LIST {/Item] = switch
SAVE [/Item] = switch

NEWTON = Type [,freql
[START = Type [,stepl |
{ MAXCUT = maxno)|
[MAXERR = maxerr 1
E EXTRAP = { ON | OFF 1} }
[]

STATIC /LINEAR LOADS=pa,pb [LIST=switch] [SAVE=switch]

ualifij g
/NONLINEAR (default)
Indicates that the static analysis is to account for

nonlinear effects such as "moderately" large rotations
and elastic-plastic material behavior.

/LINEAR
Indicates that the static analysis is to be strictly
. linear. This limits its validity to problems in which
. displacements are "infinitesimal" and deformations are

"elastic".

GIST Tutorial / Part 1 PAGE 41
Section 1.5: Command Descriptions =-- STATIC

Keywords

STATIC
INTERVAL

The Keyword phrase:
INTERVAL = pamin,pamax [,pbmin,pbmax]

specifies the solution interval in terms of “load factors".
Thus, the starting and anticipated final load vectors will be:

{P}start = pamin * {Pla + pbmin * {Plb
{P}stop = pamax * {P}b + pbmax * {P}b

where {P}a and {P}lb are the reference load vectors defined

by the preprocessor corresponding to load systems A and B
(i,e., load cases 1 and 2) respectively.

NOTE: For the initial interval, 'pamin' or 'pbmin' should be
greater than zero to obtain a nontrivial solution. For subseq-
uent intervals they should refer to a previous solution step.

STATIC
STEPSIZE

The Keyword phrase: 4
STEPSIZE = incpa [,incpbl

specifies the "load increment"” to be used in the traversal of

the solution interval. Thus, the increment in load vector will
be:

{P}inc = incpa * {Pla + incpb * {P}b

and will be added to the total load vector at the beginning of
each "solution step" beginning with {Plstart and ending with
{P}stop (as defined under STATIC INTERVAL), assuming convergence
can be maintained to that point.

[Solution steps are numbered consecutively starting from 0 (the
linear solution) and proceeding through all solution intervals.]

I - 4

.

R 2

GIST Tutorial / Part 1

W

-t

b3

Section 1.,5: Command Descriptions -- STATIC

STATIC
NEWTON

The keyword phrase:

NEWTON = { TRUE | MODIFIED,freq | SELECTIVE,max | FALSE }
specifies the "linearization” algorithm to be used for nonlinear
analysis. All of the above choices are variations on the gener-
alized Newton-Raphson procedure with the following distinctions:

TRUE The "tangent stiffness"” matrix is formed and re -
factored upon every iteration of every load step.

MOD,freq ... The matrix is formed and refactored only at the
beginning of every 'freq' th load step.

SEL,max The matrix is formed and refactored selectively
(by the analyzer) up to a maximum of 'max' times.

FALSE The matrix is formed and factored only at the be-
ginning of the solution interval.

STATIC
START

The (optionall] keyword phrase:
START = { NEW | NEXT | FROM step }
specifies the starting conditions”for the solution interval:
NEW Start from scratch, i.e., with the linear solution.
NEXT .ccoe... Simple analysis continuation. Use the current,
i.e., last-obtained, solution step as a starting
approximation for the next logical solution step.
FROM step ... Recompute an earlier solution interval using step
number 'old' as a starting approximation.

Starting load factors should correspond to the solution step
indicated by the above selection.

Default: START = NEXT

STATIC
MAXCUT

The (optional]l keyword phrase:
MAXCUT = maxcut

PAGE 42

GIST Tutorial / Part 1 PAGE 43
Section 1.5: Command Descriptions -- STATIC

specifies the maximum number of load-step cuts permitted during
the solution interval. The decision to "cut", i.e., halve, the
step is made by the analyzer based upon local convergence behav-
ior and the allowable frequency of stiffness updates.

Default: MAXCUT = 0

* STATIC
MAXERR

The [optionall keyword phrase:
54 MAXERR = tolerance

- specifies the convergence criterion to be used for the nonlinear
' iteration. The value 'tolerance' represents the maximum accept-
able relative error in either displacement or force (residual)
vector norms., Up to 12 iterations may be performed to meet this
criterion, but less will be used if convergence appears unlikely.

Default: MAXERR = .001 (.1%)
7 STATIC

EXTRAPOLATION

The [optional] keyword phrase: hl
: EXTRAPOLATION = { ON | OFF }

specifies whether or not solution extrapolation is to be used _
during the interval. With extrapolation ON, as many as three

previous displacement vectors may be used to form the initial
approximation at each load level (i.e., a quadratic fit). 1If
extrapolation is turned OFF, only the preceeding displacement
vector (unscaled) is employed.

Default: EXTRAP = ON

. STATIC
. LOAD

The keyword phrase:

LOAD = pa [,pbl

specifies the load factors to be applied to load systems A
and B, respectively, for a LINEAR analysis. In this case,
an independent solution is obtained for each load system.

GIST Tutorial / Part 1
Section 1.5:

; STATIC
’ LIST

The ({optionall keyword phrase:

. LIST [/Item] = switch

interval,
D (Displacements)
R (Stress resultants)

S (Stresses)
E (Strains)

The [optional] keyword phrase:

SAVE [/1Item] = swigch

’

the subsequent solution interval.
D (Displacements)
F (Residual forces)
Otherwise, all
The value 'switch' may be: 0

or: >0

processing and/or analysis continuation.

Default: SAVE/D = 1 SAVE/S = 1

Command Descriptions -- STATIC

indicates what is to be listed during the subsequent solution
'Item' may be any of the following:

F (Residual forces (includes reactions))
Otherwise, all of the above are assumed.

List every 'switch' load steps

(No results listed until postprocessing)

The value 'switch' may be: (0 => No list
or: >0 =>
Default: LIST = 0
STATIC
SAVE

indicates which results are to be saved (i.e, archived) during
valid

S (Stress sets (stresses,strains,resultants))

K (Assembled stiffness matrix)
of the above are assumed.

=> no archival
=> archive every 'switch' steps

. It is recommended to save solution vectors for potential post-

PAGE 44

'Item's are:

[See HELP DATABASE]

GIST Tutorial / Part 1 PAGE 45
Section 1.5: Command Descriptions

VIBRATION

Function

Defines strategy for a "small vibration"™ analysis to be
performed about either an unstressed or a nonlinearly
pre-stressed state. This is an eigenvalue analysis wherein the
results represent "natural frequencies" and corresponding
displacement modes.

Strategy parameters are saved in the global database for
subsequent review and may be selectively revised without
changing all previous settings. Once the strategy is complete,
computation is initiated via the COMPUTE command which invokes
the STAGS structural aralyzer.

Formats
VIBRATION (/LINEARI { MODES = maxnum
[RANGE = eigmin, eigmax 1
[SHIFT = eigshift]
[MAXERR = tolerance]
{ LIST {/Items] = switch]
[SAVE [/Items] = switch 1 1}

VIBRATION /NONLINEAR { PRESTEP = stepnum
MODES = maxnum
(... same options as /LINEAR 1 }

Qualifjers

/LINEAR (default)
Indicates that the vibration analysis is to be

performed with respect to an unstressed or
(equivalently) a linearly prestressed state.

/NONLINEAR

Indicates that the vibration analysis is to be
performed with respect to a "previously computed"
nonlinear prestress state. The resulting vibration
modes are to be viewed as "small-amplitude"”
oscillations about the nonlinearly deformed
configuration,

-

- faweae T
&

GIST Tutorial / Part 1 PAGE 46
Section 1.5: Command Descriptions -- VIBRATION

Keywords

VIBRATION
PRESTEP

The keyword phrase:
PRESTEP = step

specifies the number of the load- (or time-) step corresponding
to the nonlinear pre-stress configuration. It is assumed that
the displacement vector at this particular step has already been
computed and archived.

VIBRATION
MODES

The keyword phrase:
MODES = maxno

specifies the maximum number of eigenvalues/eigenvectors

(i.e., natural frequencies/modes) to be computed The

eigenvalues are extracted in order of increasing absolute
value starting with the smallest, unless otherwise speci-
fied via the SKIFT or RANGE keywords. The interpretation
of an eigenvalue is as a "natural frequency" (in cps).

VIBRATION
RANGE

The (optionall] keyword phrase:
RANGE = eigmin,eigmax
specifies the lower and upper bounds of the eigenvalue interval.
The eigenvalues are then extracted in order of increasing dist-
ance from the "center"™ of the interval. The first eigenvalue
will therefore be the one closest to 'eigcen' where:
eigcen**2 = (eigmin**2 + eigmax**2) / 2

The computation automatically terminates when all eigenvalues
within the specified interval have been determined, up to the
maximum set by 'MODES'.

8

GIST Tutorial / Part 1
Section 1.5: Command Descriptions -- VIBRATION

Default: RANGE = 0.,0.

VIBRATION
SHIFT

The {optionall keyword phrase:

SHIFT = targdet
specifies an initial eigenvalue shift, i.e,, a target value.
The eigenvalues (and corresponding modes) are then extracted
in order of increasing distance from the shift value, up to
the maximum number specified by MODES.
Default: SHIFT = 0.

Note: This option is superceded by the RANGE option.

VIBRATION
MAXERR

The [optionall keyword phrase:

MAXERR = tolerance
specifies the convergence criterion to be used for eigenvalue
extraction. The value 'tolerance' represents the maximum
acceptable relative error in eath requested eigenvalue (as
measured over two successive iterations).

Default: MAXERR = 1.E-5

VIBRATION
LIST

The (optionall keyword phrase:
LIST[(/Items] = switch

indicates what is to be listed during the subsequent solution
interval., vValid 'Item's are:

I (Intermediate iteration data)
D (Displacement modes)
Otherwise, all of the above are assumed.

PAGE 47

GIST Tutorial / Part 1
Section 1.5: Command Descriptions -- VIBRATION

The value ‘'switch' must be either: 0 => No list
: or: 1 => List

Defaults: LIST/I = 1 LIST/D = 0

The default settings are recommended for interactive use, since
the bulk of the solution may be reviewed during postprocessing.

VIBRATION

SAVE
The ([optionall] keyword phrase:
SAVE (/Item] = switch

indicates which results are to be saved (i.e, archived) during
the subsequent solution interval. Valid 'Item's are:

D (Displacement mode vectors)
Otherwise, all of the above are assumed.

The value 'switch' must be either: 0 => no archival
or: 1 => archive

It is recommended to save solution vectors for potential post-
processing and/or analysis continuation. [(See HELP DATABASE]

Default: SAVE = 1

et i e B ek il n i im 2 hats a1] ndi o ek # b ke ek o

o . Sk AL it SR i . ey

: .
3 ‘
THE GIST TUTORTIAL
:) PART 2:

i APPLICATION; GIST STRUCTURAL ANALYSIS
vy

[]

3

GIST Tutorial / Part 2 PAGE 2
Structural Analysis

1.0 INTRODUCTION

Problem-solving with GIST, i.e., structural analysis, typically
proceeds in the following cyclic manner:

------ > PRE-PROCESSING PHASE
| =--=> ANALYSIS PHASE

------- POST-PROCESSING PHASE

where "preprocessing®" represents the idealization and definition of
the finite-element model, 1loads, etc.; "analysis” represents the
numerical formulation, strategy and solution of the corresponding
mathematical model; and "postprocessing" represents the evaluation
of the solution from both physical and computational points of view.

While each of these phases is encountered in practically all classes
of structural analysis, it 1is in nonlinear static and dynamic
analysis that the "inner loop" indicated above becomes especially
prominent.

For example, during a nonlinear static analysis, the solution is
usually advanced in a step-wise fashion, with the analyst
postprocessing the intermediate results after every so many steps,
and then jumping back into the analysis phase to revise the
computational strategy and continue along the solution path. A
similar scenario exists for dynamic analysis.

It was to facilitate this essential rneed for intermediate feedback,
and expedite the potentially frequent traversals from phase to
phase, that the GIST system was developed in its present form.

As described in Part 1, the entire process of structural analysis is
interactively "controlled” and "monitored"™ from the GIST Control
Module employing the GIST Command Language. (This does not imply
that all computations must be “"performed" interactively. For
example, a long solution interval may be interactively "submitted"
to a batch queue and then interactively monitored and evaluated when
it finishes.)

In accordance with the phases depicted above, the GIST Command
Language may be logically partitioned into three groups:

(1) Pre-processing commands
(2) Analysis commands
(3) Post-processing commands

plus a number of auxiliary commands which are not tied to any
particular phase (.e.g., data-management commands).

GIST Tutorial / Part 2 PAGE 3
Structural Analysis

In Part 2, each phase of structural analysis will be discussed, in
turn, and related to the appropriate set of GIST commands. The
presentation is saturated with short examples of basic operations,
building to the final section (2.5), which features comprehensive
examples of interactive GIST applications.

For maximum benefit, we suggest referring to the command
descriptions in Section 1.5 on a regular basis.

GIST Tutorijial / Part 2 PAGE 4
Structural Analysis

2.1 THE PRE-PROCESSING PHASE

The following GIST commands are associated with the "pre-processing
phase”™ of structural analysis:

BULKM Invokes the GIFTS bulk model generator

EDITM Invokes the GIFTS model editor

BULKLB Invokes the GIFTS bulk load/bc generator

EDITLB Invokes the GIFTS load/bc editor

REVIEW Monitors Job status (e.g., REVIEW PREPROCESSING)

The finite element model, i.e., geometry, material properties,
fabrication and discretization, is typically defined via the BULKM
processor and verified, extended and/or modified (in detail) via the
EDITM processor. A similar relationship exists between BULKLB and
EDITLB for definition of 1loads, boundary conditions, initial
conditions and generalized constraints. Each of these GIFTS
processors is interactive-graphics oriented and driven by the GIFTS
command language.

The REVIEW command is actually associated with every phase of
analysis. It is a Control Module utility for monitoring the status
of a case throughout its evolution. Certain forms of the command,
however, will be shown to be specifically relevant to
pre-processing. :

Once the model, 1loads, boundary conditions, etc. have been
completely defined and verified, the user is then ready to enter the
"analysis phase" which is described in Section 2.2. 1It is possible
to return to the pre-processing phase as the structural analysis
progresses to recheck, or in some cases even modify, the finite
element idealization. However, post-facto changes to the model
should be made with caution, as solution continuation will not
always be guaranteed (see Subsection 2.2.1).

In the following subsections, the function of each of the above GIST
commands is expanded upon and illustrated by example. Note that the
GIFTS pre-processing command language will only be highlighted in
this section (As wusual the reader is referred to the GIFTS User's
Manual for the details and generalization). Special consideration
is given to those GIFTS commands whose interpretation is of special
consequence to the STAGS analysis process. For a summary of
GIFTS-STAGS "interface conventions" consult Appendix A.

GIST Tutorial / Part 2 PAGE 5
Section 2.1: The Pre-processing Phase

2.1.1 MODEL GENERATION

Model generation typically begins by invoking the GIFTS bulk model
generator, BULKM, and defining the basic geometry, fabrication and
discretization for one or more subregions of the structure. EDITM
is then used to edit the model, with the Control Module
intermediating.

As a simple illustration, suppose we wish to model a stiffened
rectangular plate with lateral imperfections. We begin by making a
sketch of the following form:

FS
Y
T,L-/—{- e 00" e ’
’[Py B3> ‘¢
~ Al .
LN E L IR N

i 5

Section 5-5

Ll 2,

The corner numbers: 1,2,3,4, the boundary names: Bl,B2,B3,B4, and
the surface name: PANEL, are all arbitrary, but will be useful for
automatic mesh generation as we will see.
Now, having made such a sketch, we are ready to get on the computer.
First, we will summon the Control Module (see Section 1.1) and
establish a Jobname, e.qg.,

IR R T T E R E N S I R R N E E R EE R EER IR SR

<<>> GIST [GRAPHICS-INTERACTIVE STRUCTURAL ANALYSIS 1

AR EEE R R E R N I R R I T R R N R N N R R AR SN R E RSN EE
Jobname: PANEL1
<> New Job

Command | HELP | QUIT
GIST?> (GIST command prompt)

To invoke BULKM, we call it by name, i.e.,
GIST> BULKM

and wait for the GIFTS processor to respond with:

GIST Tutorial / part 2 PAGE 6
Section 2,1.1: Model Generation

<< BULKM [Bulk Model Generator 1] GIFTS/vVersion xxx

JOB: PANELl
* (GIFTS command prompt)
i Using the sketch for guidance we proceed with the 1logical sequence

of generation: (i) key points, (ii) boundary lines, and (iii)
surfaces; declaring material and fabrication properties as

necessary:
: . * ELMAT,3 /1/ 10000., 1.37, .3 / i
’. * ETH,]. /1/ cl /
- * RECTH 72/ 5.4 2./ .2, .2/
%* * KPOINT
| > 1/0.
: > 2/100.
> 3/100.,50.
> 4/0.,50.
) > 5/50.,25.
) * LETY/BEAM2,210/1,2
, t SLINE,10
> sl /1,2,21 /5
> 82 /2,3,11 /5
> S3/3,4,21 /5
> S4 /4,1,11 /5
; * GETY /QB4,,410/1,1 , 1
* GRID4
> PANEL /S1,S2,S3,54

* KN/LN/GN/ PLOT

In the above command stream, the first command, ELMAT, tabulates the
elastic material properties for future reference as "material group"
number 1. Similarly, the next two commands, ETH and RECTH, tabulate
' the section properties for the plate and hollow rectangular
stiffener as "thickness group" number 1 and 2, respectively.

. The KPOINT command defines the coordinates of the plate's four

. corner points, plus an additional reference point, 5, which will be
used for stiffener orientation. Note that these "Keypoints" are not
to be thought of as "nodes”, which generally possess degrees of
freedom, but rather as labelled generating coordinates.

The subsequent commands utilize the above information to generate

- the boundaries of our model, which in this case also happen to have
stiffeners., The LETY command designates the line-element type to be
used during generation. (In the absence of stiffeners, LETY would
have been unnecessary.)

GIST Tutorial / Part 2 PAGE 7
Section 2.1.1: Model Generation

The parameters, 'BEAM2' and '210', represent the 1line-element's
"physical® (GIFTS) and "computational® (STAGS) names, respectively,
while the next two parameters, 'l,2', make the apprcpriate material
and thickness group assignments. The SLINE commznd then generates
the four straight lines labelled S1 through S84, incorporating the
beam elements just specified. Notice that each line is described by
its label (e.g. S1), key-point connectively (e.g. 1,2) and node
density (e.g., 21). For instance, "stiffener" Sl is composed of 20
beam elements.

The last stage in the progression is surface (i.e., "grid")
generation which is accomplished with the next two commands: The
GETY command is the 2-dimensional equivalent of the LETY command.
It designates a grid-element type for subsequent generation. 1In
this case, 'QB4', (4-node quadrilateral bending element) and '410'
are the physical and computational surface element names (see
Appendix A), and the associated material and thickness group numbers
are both 1.

The GRID4 command then generates the 4-sided surface bounded by
lines S1, S2, S3, S4 by interpolation and £ills in the mesh with the
quadrilateral elements Jjust prescribed. The mesh density is
determined from the corresponding boundary node densities. Hence,
the grid will possess a total of 21 x 11 (=231) nodes and 20 x 10
(=200) guadrilateral elements.

The final command sequence, 'KN/LN/GN/PLOT', displays the model

geometry (excluding elements), 1labelling all key points, boundary
lines and grids, The picture should 1look something 1like the
original sketch.

Oh yes, we have inadvertently generated a "perfectly"” flat plate (a
physical impossibility). Now to introduce some transverse waviness,
we may, for example, enter the following command:

* SIMP
> PANEL /3,1 /.03,.01

which specifies 3 simusoidal half-waves parallel to the x direction
and 1 parallel to the y direction, with respective amplitudes of .03
and .01 inches. Now when we say:

* PLOT

the grid will be regenerated with corresponding perturbations in the
nodal coordinates (which can be scaled for display).

To verify the model in greater detail, or make "local" changes to
our "bulk” definition, we must employ the GIFTS model editor, EDITM.
First, to exit from BULKM we enter:

* QUIT

and wait for the familiar greeting:

GIST Tutorial / Part 2 PAGE 8
Section 2.1.1: Model Generation

Command | HELP | QUIT
GISTD)>

which means we have been returned to the Control Module and may
enter a GIST command. We proceed with:

GIST > EDITM

which invokes the EDITM processor and catapults us right back to the
GIFTS domain.

<<O>> EDITM [Model Editor 1 GIFTS / Version xxx

JOB: PANEL1l

*

We are now in a position to display, tabulate or update the model by
command.

For instance, to display the element discretization, 1labelling all
node and element numbers, we may enter:

* ELEMENTS/PN/EN/ PLOT

To replace the element number labels with material group numbers and
re-display, we enter:

* MN/ PLOT
In each case the screen is immediately cleared before displaying the
new plot. Since we are looking at a planform view, we may want to
rotate the model to give it some perSpective and also verify the
imperfections, ala:

* ROTV/-60, -30/ PLOT
and so on.
To list the nodal coordinates, we use the command:

* INFP /1,100
and to list the material properties (for group 1):

* INFM/1

Similar INFormation commands are available for practically all model
and solution parameters.,

GIST Tutorial / Part 2
Section 2.1.1: Model Generation

Now, suppose we wish to change our definition of the material from
elastic-isotropic to plastic-isotropic. We simply redefine material
number 1 as follows:

NLMAT,3 /1,4/ 10000., 1.E7, .3
.001, 10000.
.002, 15000.
.003, 20000.
.004, 22000.

VVVV %

* INFM /1/

The NLMAT command defines a "nonlinear material®™ by setting the
stress~free material properties as in the elastic case, and
additionally specifying 4-points on the stress-strain curve. The
integer 1 on the first 1line is the material group number.
Consequently, the previous definition of material group 1 is

completely overwritten. The INFM command is then used to verify the
new definition,

To verify our stiffener cross-sectional geometry, we sSelect an
especially suited graphics option:

* PLOTBC /2/

The above command will display the channel section which we -defined
as ‘'thickness group 2' labelling all dimensions and indicating the
locations of the attachment point, centroid and shear center, as
well as the orientation of the principal axes with respect to the
nodal reference plane.

Eventually, after satisfying ourselves that the model is absolutely
correct (though not necessarily valid) we are ready to prescribe its
environment, i.e., loads and boundary conditions.

Recall that we are currently (in our illustrative example)
communicating with EDITM. To return to the Control Module, we again
use the command:

* QUIT

GIST?>
and ponder our next move.

Before proceeding with load and boundary condition generation, we
might wish to confirm our status, via:

GIST?> REVIEW JOB

which will show that model generation has been initjiated.

GIST Tutorial / Part 2 PAGE 10
Section 2.1.1: Model Generation

For a more descriptive report, we could enter:

GISTS> REVIEW PREP

The latter command produces a summary of model statistics, e.g., the
number of nodes, elements, grids, materials, etc., currently
defined.

Finally, if we happen to be database conscious:

GIST> REVIEW/TOC PREP

will summarize the current preprocessing contribution to the Job
database.

Now, suppose we have forgotten which set of 1loads and boundary
conditions are of highest priority to our client, boss, or whomever,
and need to make a long-distance call before proceeding. We could
then enter:

GIST?> QUIT

and feel free to resume later ...

{See Subsection 2.1.2 for the sequel)

GIST Tutorial / Part 2 PAGE 11
Section 2.1.1: Model Generation

Remarcks

1. The above example, although simple, illustrates the basic
procedure for generating even the most complex models. BY using
generalizations of the GIFTS commands shown, we can generate
"sequences" of arbitrary three dimensional curves and surfaces
featuring a variety of materials, fabrications and element
types.

2. GIFTS commands do not have to be entered interactively, i.e.,
one at a time. Instead, entire command streams may be prepared
apriori (e.g., with a text editor) and entered via a single
command: OLB. For example, if the BULKM command stream were
prepared on a file called PANELM.SRC we could have entered:

* OLB/PANELM

at the beginning of our interaction with BULKM, and viewed the
model generation in "spectator mode".

3. EDITM may be used not only to modify material properties, nodal
coordinates, element connectivity, etc., but also to generate
entire subregions of the model which do not lend themselves to
automatic (i.e., bulk) generation. Conversely, BULKM may be
used to make large scale modifications to the model involving
redefinitions of keypoints, lines or grids. For example, grid
ref inement can be accomplished by re-entering the corresponding
boundary 1line generation commands (e.g., SLINE) with larger
node-density parameters. The grid will then automatically be
re-generated with the appropriate density upon exiting from
BULKM. Another popular option is to update the original command
file (see previous remark) with a text editor and simply
regenerate the entire model. ,

4, It is often convenient to save frequently used commands or
groups _of - commands in separate text files. These can then be

---gccéessed (via the OLB command) as "micro-commands". For
example, the command string:

LPROJ
LINE1l/SURF1A, SURF1B
LINE2/SURF2A, SURF2B
LINE3/SURF3A,SURF3B

VVV ®»

forces 3 separate 1lines to be on 3 separate surface
intersections, By saving this expression in a text file called
PROJ.SRC, it can then be invoked from BULKM at will, via
OLB/PROJ, and used to reinforce the intersections whenever
necessary, e.g., following a change in one of the surface
geometrics,

5. The reader is urged to consult the GIFTS Primer (G2] for a
broader look at model generation procedures.

—— A

,‘_" roiinicaby

GIST Tutorial / Part 2 PAGE 12
Section 2.1: The Pre-processing Phase

2.1.2 LOADS, BOUNDARY CONDITIONS, ETC.

E The specification of all external 1loads, boundary conditions,
. initial conditions and any generalized constraints, is performed by
another set of GIFTS processors: BULKLB and EDITLB.

3 BULKLB is primarily used to apply distributed 1loads, b.c.'s, etc.:
‘ along the "key lines" and "grids" generated with BULKM. EDITLB is
then used for graphical verification and local modification of these
external conditions. (It can therefore be viewed as the load and
b.c. counterpart of EDITM.) Both are invoked from the GIST Control
Module by name.

For clarity and continuity, we shall proceed with the example
introduced in Subsection 2.1.1 as a means of illustrating the
essential features of load and b.c. generation. If you recall, we
had generated an "imperfect" rectangular plate, bounded by four
eccentric stiffeners. Now suppose we wish to investigate its
structural response under the following two external load systems:

o
(Tn-Prane. Moment)
o)
—
\] [/
!_4>::
P=AS pst P N = 700 (Y /5 ®/¢a

which may act simultaneously and in various combinations. For the
time being, all boundaries are assumed to be simply-supported. (we
will later modify this to exploit the stiffeners.)

Again, armed with the above sketches, we return to the computer and
re-awaken the Control Module:

t + ¢t ¢+ 1 + ¢ ¢ 2 t ¢ 3 1 3 £ 3 1 £ 2 3 ¢ E 3 2 2 £ 2 E 222 £ 2 3 2 2 2 2 2 2 ¢t 2 2 2 F 2 2 2 2 2 2 2 £ 2 1 1§
<<>> GIEST [Graphics~Interactive Structural Analysis]

Jobname: PANEL1
<> Existing Job

GIST)>

GIST Tutorial / Part 2 PAGE 13
Section 2.1.2: Load and "BC" Generation
After confirming that things are as we left them, via:
GIST> REVIEW PREP
we proceed directly to the bulk load and b.c. generator, i.e.,

GISTDO> BULKLB

- - ms " e on - = - - o= -

<<>> BULKLSEB [BULK LOAD/BC GENERATOR] GIFTSxxx

Jobname: PANELl

Loading Case 1

*

The GIFTS message "Loading Case 1" implies that all subsequently
generated loads will be attributed to the first loading case. (This
will become clear in a moment.)

The situation shown in the above sketch may be 1idealized by
employing the following command stream, which will serve as a focal
point for our general discussion.:

SUPL,3 /S1/S2/S3/S4/
SUPL,1 /S1/S3/
SUPL,2 /S52/84/
SUPL,4 /S2/S4/
SUPL,5 /81/83/

* % * % *

LIVE ,
LOADG ’

PANEL /-25- '_250 '--250 '-250/
DEAD

*V * %

*

LDCASE/2

* LOADL
> Sz /0.'-1000
> sS4 /100.,0.

* QuiT

The first block of commands (the SUPL's) introduce the desired
boundary conditions. For instance, the SUPL,3 command suppresses
the third nodal degree-of-freedom, w, (i.e., the displacement
component in the GLOBAL z-direction) on boundaries S1 through S4.
The remaining SUPL commands complete the simple-support
representation,

The LOADG ("load grid") command then applies a uniform pressure of
25 psi to the top surface of the panel. Note that the pressure
value is specified at each of the grid's 4 corner points which

GIST Tutorial / Part 2 PAGE 14
Section 2.1.2: Load and "BC" Generation

allows for a bilinear variation over the interior. The LIVE command
preceding LOADG turns on the "live load"™ mode switch while the DEAD
command turns it off. In the default, or "dead", mode, the pressure
would have been constrained to remain parallel to the global z-axis
throughout the plate's deformation; while in the "live" mode, the
pressure is allowed to rotate and thereby maintain its normality to
the surface, If we assume our pressure is being induced by a fluid
interface, e.g., hydrostatic conditions, the latter mode is
obviously more realistic.

Next, the LDCASE command is used to establish "loading case™ number
2. This will segregate the previously defined lateral loads from
the yet to be defined in-plane loads. All subsequent 1loads (until
the appearance of another LDCASE command) will be associated with
the second loading case, and hence accumulated in a separate array.

Finally, the LOADL ("load-line") command is wused to apply the
linearly varying Nx (see sketch) on boundaries S2 and S4. Notice
that the force per unit length (directed in the global x-direction)
is specified at the (two) key points defining each boundary.

Now, to verify and/or modify what has just been (hypothetically)
generated with BULKLB, we will transfer to EDITLB, thusly:

GISTD> EDITLB

JOB: PANEL1
Loading Case 1
* ELEMENTS/ELDON/ PLOT

In the above scenario, we invoke EDITLB and immediately direct it to
plot. The picture will feature a "vectorial" characterization of
the pressure field (corresponding to loading case 1) superimposed on
the discrete model. The EDITLB model display options are identical
to that which may be obtained via EDITM. (Note that the orientation
of the model 1is always remembered from session to session, while
such options as ELEMENTS and ELDON are not.)

To display the second loading case, we may enter:

* LDCASE/ 2
* ELDOFF/ PLOT

which would display the distributed line loads (on boundaries S2 and
S4) as equivalent nodal force vectors. The ELDON/ELDOFF commands
switch the element-load display mode on and off.

GIST Tutorial / Part 2 PAGE 15
Section 2.1.2: Load and "BC"™ Generation

We may also print the actual force components, via:
* INFLD /1,100/

To check the boundary conditions,
* TRANFR/PLOT

will display all active translational freedoms as un-headed
®"arrows", while:

* ROTFR/PLOT

will do the same for rotational degrees of freedom. The missing
"arrows" will correspond to those freedoms which have been
supressed.

We may also display all active freedoms corresponding to a
particular component, via 'TRANFR,n', where 'n' is the nodal dof
number (1 thru 6). Alternatively, the INFP command may be employed
to list the full freedom pattern at any sequence of nodal points.

Now suppose we have changed our minds on the simple-support
conditions, and would 1like to release the boundary except for a
discrete "hinge" at each of the four corners. This would allow the
stiffeners to play a more substantial role (see sketch). We could
always go back to BULKLB and revise our definition of the boundary
conditions; but for demonstration purposes we will employ EDITLB to
directly release the "internal” boundary nodes. This can be done as
follows:

* PN/PLOT g
* RELP

> 5,23

> 24,42

> 43,61

> 62,80

>

x

where the PLOT command has been used to graphically recall the node
numbers, and the RELP ("release-point"™) command to release all
freedoms at the appropriate nodes. We can now verify the new
boundary conditions by redisplaying the active freedoms, i.e.,
TRANFR/PLOT ... /ROTFR/PLOT.

Another interesting application of EDITLB is for the introduction of

i

GIST Tutorial / Part 2 PAGE 16
Section 2.1.2: Load and "BC" Generation

concentrated forces at interior nodes. For example, to "trigger" a
particular buckling mode in a nonlinear collapse analysis, we might
introduce a small transverse point force (or couple) in the vicinity
of the anticipated wave-crest. Point forces (or moments) may be
applied to any node in the model with the following command:

* LOADP,k /n/v

where 'k’ indicates the direction, 'n' is the node number, and 'v'
is the magnitude of the force (or moment).

Once the correctness of the model, loads, boundary conditions, etc.,
have all been established, it is time to get on with the analysis.
The user should then return to the Control Module and prepare
accordingly, e.g.,

* QUIT

ommand | HELP | QUIT

C a
G I ST > HELP ANALY¥SIS

(The "analysis-phase” is taken up in the following section.)

GIST Tutorial / Part 2 PAGE 17
Section 2.1.2: Load and "BC" Generation

Remarks

1. The orientation of nodal degrees of freedom will depend on the

coordinate system which was active when the node was generated.

If a "local" coordinate system was not employed, all degrees of

freedom will be alligned with the "global® x, y, z axes. 1If a

"local"™ coordinate system was used, e.g., c¢ylindrical or

spherical, the degrees of freedom will be alligned with the

. local basis vectors, which may vary from point to point. For

example, a surface grid generated in a cylindrical coordinate

system with the radial coordinate, r, fixed, will have all of

& its degrees of freedom either normal or tangential to the

i underlying cylindrical surface. See the GIFTS User's Manual

: . [(Gll] for the various conventions and restrictions surrounding
! "local degrees of freedom”.

AC A

NOTE: Temporarily, all loads, (except for pressures) must be
= defined . in the global coordinate system; even if the
- displacement dof's are oriented in some other system. This

inconvenient restriction will be removed as soon as possible.

. 2. Loading cases may be used to define both "load systems" and

- "initial conditions"., By default, each loading case corresponds

i to a "load system”, which is simply a collection of prescribed
forces, displacements, temperatures, etc. which are intended to
act in unison, i.e., in fixed relative proportion to one
another. During the analysis, individual load systems may then
be scaled and combined as a matter of solution strategy (see
Section 2.2). The current (i.e.,, STAGS) 1limitation on the
nubmer of active 1load systems is 2. These will often be
referred to as load systems "A" and "B", respectively.

; To designate a loading case as an initial condition vector, use
the following form of the LDCASE’ command:

LDCASE, i/n

where 'n' is the number of the 1loading case and 'i' may be
either 1, for initial displacements, or 2, for 1initial
velocities. Nonzero initial displacement or velocity components
are then specified via the GIFTS 'DISP' commands.

* 3. Boundary conditions involving displacement degrees of freedom
are handled differently depending on whether they are prescribed

, to be zero (i.e., homogeneous) or nonzero (i.e,,
| ’ nonhomogeneous) . The zero displacement conditions are normally
' » imposed via SUP-type commands ("suppress"-freedom) which may be

entered at any time, while the nonzero conditions are
"prescribed” via DIS-type commands and must be associated with a
particular loading case. Note that, initially, all nodal
degrees of freedom (i.e., u,v,w,ru,Iv,rw) are assumed present at
all nodes. The user may then begin "suppressing" or
"prescribing” degrees of freedom as necessary.

SRR : . i lJ

GIST Tutorial / Part 2 PAGE 18
Section 2.1.2: Load and "BC" Generation

4.

"Live" loads are currently restricted to be normal surface
tractions, i.e., pressures, Hence, LOADG is the only GIFTS
load- generating command which may legitimately follow the LIVE
mode switch, For information on the use and range of validity
of the live pressure option in nonlinear analysis, consult the
STAGS Theoretical Manual (or call B.0. Almroth at xxx=-xxxx).

GIST Tutorial / Part 2 PAGE 19
Structural Analysis

2.2 THE ANALYSIS PHASE

The following GIST commands are associated with the ™analysis
phase”, in which the user employs the system to compute the
structural response, stability or vibrational characteristics of the
preprocessed finite element model:

and (2) the STAGS Pre-Analyzer (STAGS2)
STATIC Prepares strategy for a STAGS static analysis
DYNAMIC Prepares strategy for a STAGS dynamic analysis
BUCKLING Prepares strategy for a STAGS buckling analysis
VIBRATION ... Prepares strategy for a STAGS vibration analysis
COMPUTE Invokes the STAGS Analyzer (STAGS2) for solution
REVIEW Monitors Job status (e.g., REVIEW ANALYSIS)

Once the model (i.e., geometry, fabrication, discretization, loads,
boundary conditions, etc.) have been completely defined, the SETUP
command is required to make the transition from preprocessing to
analysis. The command accomplishes two primary functions: (i) the
adaptation of the GIFTS-generated model into a suitable STAGS format
by the G2S "Adaptor” and (ii) conversion of the physical
representation of the model into a computationally convenient
representation by the STAGS "Pre-Analyzer”"” (STAGSl). The combined
procedure thus provides the "setup”" for all possible forms of STAGS
analysis and need not be repeated unless the model is subsequently
updated BY THE USER.

The strategy commands: STATIC, DYNAMIC, BUCKLING and VIBRATION, may
then be used to specify algorithmit parameters for the forthcomin
solution interval. For example, a dynamic solution interval woulg
require specification of the time interval involved, the stepsize to
be used to traverse the interval, the desired time integration
method, the load (amplitude) history, and various optional
parameters (e.g., print and save switches). The solution strategy
is automatically saved in the database so that it can be reviewed
and selectively updated as the analysis progresses.

When the analyst has finished defining or revising the strategy,
solution computation may be initiated via the COMPUTE command. This
command invokes the STAGS "Analyzer" (STAGS2) to act on the current
strategy, and to compute those solution vectors (i.e.,
displacements, velocities, stresses, etc.) within the specified
interval. If the analyst has opted to save the necessary results,
the solution may be advanced, i.e., "restarted" from a previous
solution interval. This simply involves updating the strategy and
re-issuing the COMPUTE command.

Note that solution computation may be performed in either
interactive or batch modes, according to the qualifier selected,
i.e., /INTERACTIVE or /BATCH.

— — s, | O —— J

GIST Tutorial / Part 2 PAGE 20
Section 2,2: The Analysis Phase

The REVIEW command, in the context of the analysis phase, provides a
convenient means for checking the overall status of the anaysis and
for verifying the current solution strategy. For example, the
REVIEW STRATEGY option may be used in conjunction with the strategy
definition commands, STATIC, DYNAMIC, etc., to provide a "strategy
editing” capability. Other useful REVIEW options will be
demonstrated throughout this section.

In the following discussion, each of the above commands will be
considered in greater depth, primarily in regard to their respective
functions and limitations. (For the details of the command formats,
refer to Section 1.5: GIST Command Descriptions, where the commands
are presented in alphabetical order.] For more comprehensive
information on STAGS analysis capabilities, including theoretical
formulations/assumptions, numerical implementation and advice on
solution-strategy selection, consult the STAGS Theoretical Manual
[s2] and Section 6 of the STAGS User's Manual [sl].

GIST Tutorial / Part 2 PAGE 21
Section 2.2: The Analysis Phase

2.2.1 ANALYSIS "SETUP"

The function of the SETUP command is to effect the necessary
transition from the preprocessing phase to the analysis phase. This
is a two- stage procedure which is automatically administered by the
Control Module.

The first stage is the adaptation of the model from GIFTS to STAGS
formats, which is performed by the GIFTS->STAGS Adaptor (G2S). The
G2S processor operates on the GIFTS database representation of the
model and produces a corresponding "input file" for the STAGS
Pre-Analyzer (STAGSl).

The Pre-Analyzer is then invoked to produce a computationally-ready
version of the model for utilization by the STAGS Analyzer (STAGS2).
The resulting data structures, e.g., element kinematic and
constitutive arrays, are added to the database and may be
subsequently employed for any form of STAGS analysis (irrespective
of solution strategy).

Hence, the SETUP procedure is typically required only once during
the course of an analysis, i.e., following the initial definition of
the complete model, However, should the user subsequently update
the model (or somehow destroy the analysis database), the SETUP
command will then have to be repeated.

Adaptation from GIFTS to STAGS (G2S)

The G2S "Adaptor" module is formally presented in Part 3 of this
text. Essentially, this processor, which is automatically engaged
by the SETUP command, finds the appropriate correspondence between
GIFTS and STAGS model descriptions, and produces a card-image input
file for the STAGS Pre-Analyzer (see below). When running in an
interactive mode, the user will see only the initiation and
termination of this processor, unless something has gone wrong. For
example, if an unrecognized (or unaccomodated) element type is
detected in the GIFTS database, G2S will print a corresponding
message and terminate. The user should then employ one of the GIFTS
processors to correct the definition and repeat the SETUP command.
(The summary of GIFTS-STAGS conventions in Appendix A may be
helpful.)

Upon successful completion of G2S, the total number of STAGS input
records (i.e., card-images) produced is 1listed. The disk file
containing these records is then automatically accessed by the STAGS
Pre-Analyzer, which follows immediately. Note that the name of the
file created by G2S is of the form:

'‘Job' ,.G2S

where 'Job' represents the current 'Jobname' (see Section 1.1).
Since it is a standard "formatted" file, it may be easily

GIST Tutorial / Part 2 PAGE 22
Section 2.2.2: Analysis "Setup"

transported to another computer for "remote" STAGS executions.
Otherwise, the file should only be of interest to the user in the
event of an unreconcilable G2S problem; in which case it may be
printed and used as a debugging aid.

Pre-Analysis

The STAGS Pre-Analyzer (STAGS1l) is normally invoked by the SETUP
command as soon as the G2S Adaptor has successfully prepared its
input. The function of the Pre-analyzer is to facilitate subsequent
element stiffness and internal force calculations, which may occur
quite frequently in nonlinear analysis. To this end, the following
tasks are performed:

(1) Re-tabulation of element, fabrication, and nodal data
in conveniently accessible file structures.

(2) Evaluation and storage of element strain-displacement
interpolation arrays and constitutive matrices at
Gaussian integration points.

(3) Assignment of computational equation numbers employing a
bandwidth optimization scheme.

(4) Assembly of mass matrix and displacement-independent
external load vectors in computationally ordered arrays
(i.e., according to (3)).

(5) Generation of stiffness profile (or "skyline") vector to
facilitate ("compacted-column") stiffness factorization.

(6) Estimation of global stifffiess formation, assembly
and factorization times (and operation counts).

(7) Archival of results in "analysis database" for
utilization during both analysis and postprocessing.

These operations are performed apriori to avoid excessive re-
computation by the STAGS Analyzer, but, of course, this is at the
expense of increased data storage,

The printed output from the Pre-Analyzer is usually just a summary
of the above tasks. However, in case of an inexplicable error, the
user may obtain a highly verbose listing from the Pre-Analyzer by
using the following option:
GIST?> SETUP LIST=FULL
or:

GISTD?> SETUP LIST=FULL OUTPUT=Somefile

GIST Tutorial / Part 2 PAGE 23
Section 2.2.2: Analysis "Setup"

Note also that the SETUP procedure (G2S/STAGSl) may be exercised 1in
a batch mode via:
G IST> SETUP/BATCH [options]

where the precise command description is presented in Section 1.5.

The eventual result of using the SETUP command is to create an
embryonic "analysis database" (see Section 2.4) from which all kinds
of (STAGS) structural analyses may evolve.

LIPS

GIST Tutorial / Part 2 PAGE 24
Section 2.2: The Analysis Phase

2.2,2 STRATEGY PREPARATION

Once the structural analysis has been "setup", as described in the
previous subsection, the user must specify certain strategy
parameters before the STAGS Analyzer may be invoked to perform a
solution. These parameters are specified via one of the "strategy
commands®. The nature of the parameters will depend on the “"problem
class"™ selected, and this 1is explicitly indicated by the command
name (and qualifier).

The following commands are presently available for specifying
solution strategy:

(1) STATIC
(2) DYNAMIC
(3) BUCKLING
(4) VIBRATION

Each command corresponds to a separate problem class and requires
the specification of an associated set of strategy parameters. The
paraxneters are defined in "keyword phrases" (cf. Section 1.2) and
may be smecified either all at once or gradually.

For example, strategy for a 1linear static analysis might be
specified as:

GIST> STATIC/LIN LOAD = 1. LIST = SAVE = 1
GIST?> REVIEW STRATEGY
: (strategy listed)
or, alternatively, as: .
GIST> STATIC/LIN LOAD=].
GIST> REVIEW STRAT
: (strategy listed)
ST> STATIC/LIN LIST=0 SAVE=]
GIST?> REV STRAT
: (updated strategy listed)
where the REVIEW command is used extensively for verification.

A more informative prompt may be obtained by entering 3just the
strategy command 'name' and 'qualifier' on the first line, e.gq.,

Command |HELP |QUIT
GIST?> STATIC/LINEAR

—

-~

S e

GIST Tutorial / Part 2 PAGE 25
Section 2.2.2: Analysis Strategy

Keywords: LOAD (LIST] ([SAVE]
GIST STATIC > LOAD = 1., LI3T=0 SAVE=l

Command |HELP |QUIT
GIST>

Notice that the keywords associated with STATIC/LIN are splashed on
the screen. Then, after the user has responded, the prompt reverts
back to its more basic form. Note also, that the keywords enclosed
in brackets, i.e,, LIST and LOAD, are not mandatory ~-- default
settings exist for their associated parameters.

For more "on-line" information, the user will have to employ the
HELP command. For example:

GIST?> HELP STATIC/LIN
or:
GIST?> HELP STATIC LOAD

or:
GIST?> HELP STATIC LIST

and so on,

Another important feature of the strategy commands is that all
parameter (i.e., keyword) definitions are saved in the "analysis
database" (see Section 2.4). This means that the user has a
permanent record of all previous Strategies and, furthermore, may
update current strategy parameters selectively.

For instance, suppose the user has already performed the linear
static analysis “strategized" above, and would like to repeat it
with an extended list option. The user could return, say, on
another day, "log-on"™ under the original Jobname, REVIEW the old
strategy, and then modify the appropriate keyword, i.e.,

GIST?> STATIC/LIN LIST=1

The new strategy would thus be completely defined and ready for
analysis,

In the following paragraphs, each of the basic problem classes and
corresponding strategy commands will be discussed in turn. The
emphasis will be on providing some insight into the relative
significance of the various strategy parameters.

~

Pl S 4

GIST Tutorial / Part 2 PAGE 26
Section 2,.,2.2: Analysis Strategy

STATIC/NONLINEAR Strategy

In a (STAGS) nonlinear static analysis, the time-independent, i.e.,
equilibrium, response of the loaded structure is computed with the
possibility of accounting for "moderately"™ large rotations and
plastic deformations. For example, such an analysis is often used
to predict the collapse load of a general sheil structure or to
assess its postbuckling strength. There is much controversy as to
when it becomes necessary to perform a dynamic analysis, when a
linear analysis is sufficient, when a 1linearized bifurcation
buckling analysis is sufficient or, generally, just what is the
range of validity of a nonlinear static analysis. However, a good
deal of insight regarding these questions may be grasped from
Section 6 of the STAGS User's Manual ("Modeling and Strategy").

The solution to a nonlinear static problem is usually obtained in a
stepwise fashion. The total 1lcad is thus applied incrementally,
with stiffness updates and equilibrium iterations performed
according to both the user's specifications and various built-in
program criteria.

At each step, the equilibrium equations are reformulated with
respect to the original (reference) configuration, and a complete
solution is sought. This approach is sometimes referred to in the
literature as a "Total Lagrangian” implementation.

Each converged solution on the load-displacement path will be
referred to as a "load step", or more generally, as a "solution
step”. The "stepsize" is then defined to be the 1load increment
between two successive solution steps. (This same terminology may
be applied to dynamic analysis by replacing the word "load"™ with
"time",)

In static analysis, there are potentially 2 stepsizes; one for
"load system A" and one for "load system B"™ (corresponding to the
first 2 GIFTS standard 1load cases; cf. Section 2.1.2). The
specification of each stepsize is made in terms of an amplitude or
"load factor". The following two equations should clarify these
notions:

{F} = {Falref * pa + {Fblref * pb <1>
{F}linc = {Falref * incpa + {Fblref * incpb <2>
where:

{F} .e.e... Combined structural load vector at a given
point on the load path.

raref ... Reference load vector defined as load system A
(usually equivalent to "loading case” 1).

'+ r+af ... Reference load vector defined as load system B
(usually equivalent to "loading case" 2).

GIST Tutorial / Part 2 PAGE 27
Section 2.2.2: Analysis Strategy (STATIC/NONLINEAR)

pa/b Load factors for load systems A and B
at given point on the load path.

incpa’b ... Specified increments in load factors for
load systems A and B. These are the "stepsizes"”.

{F}inc Combined "incremental"” structural load vector |

; . Since a single set of stepsizes ('incpa' and 'incpb') and a single
2l . stiffness-updating/iteration strateqgy is not usually sufficient to 3
‘ obtain an accurate solution for the total load, a series of such

strategies may be employed. Thus, the total 1load path may be
. computed in a series of "solution intervals”, each of which

. corresponds to a separate solution strategy, and represents a
| £. separate execution by the STAGS Analyzer. The number of expected
X3 solution steps in a particular solution interval is governed by the i
{ strateqy specification for that interval.

A continuation from one interval to the next (or "restart", to use
the historical term) usually involves a certain amount of solution .
evaluation, or postprocessing, followed by a suitable change in 1
strategy. The "smoothness" of the continuation will depend on the
number of previous solution steps which have been saved and whether
or not "extrapolation" has been selected. The GIST command lanquage . 4
and database system make this process relatively automatic.

. o amaEe
R
3

The strategy command which is used to plan a nonlinear. static
solution interval is:

STATIC [/NONLINEAR]

where the brackets indicate that the qualifier /NONLINEAR is
optional, i.e., nonlinearity is the default mode. The following
keywords represent the various paraméters which may be set with this
command:

INTERVAL STEPSIZE NEWTON
(START MAXCUT MAXERR EXTRAP LIST SAVE]

where the keywords in brackets are optional in the sense that
default settings are provided for the corresponding parameters. The
first three keywords, INTERVAL, STEPSIZE and NEWTON are essential k
and must be set by the user "at some time".

: We will now discuss these keywords, leaving most of the details to
* Section 1.5,

‘
s
£
¢
i

INTERVAL is used to define the forthcoming solution interval in
terms of load factors, i.e., i

INTERVAL = pamin,pamax (pbmin,pbmax]

_ X ——— ”Im..-....-h.Ji‘I

GIST Tutorial / Part 2 PAGE 28
Section 2.2.2: Analysis Strateqgy (STATIC/NONLINEAR)

specifies the starting and stopping load factors for systems A and
B, respectively. At the start of the first solution interval either
'pamin' or 'pbmin' should be greater than zero (load factors must
always be positive). Ideally, these initial 1load factors are
selected so that the very first solution step is practically 1linear
in behavior; but since this is not always easy to assess, it may be
necessary to repeat the first interval with progressively smaller
initial load factors.

The parameters 'pamax' and 'pbmax' represent the load levels sought
at the end of the solution interval. Keep in mind that these are
just target values, and will be attained only if there are no
convergence (or execution) problems.

For all subsequent intervals beyond the first, the starting 1load
factors, ‘'pamin' and ‘'pbmin' should correspond to a previously
computed (and saved) solution step. For example, the following two
consecutive strategy specifications:

GIST> STATIC INTERVAL = .1, .5
GISsST?> COMPUTE . {invokes Analyzer)
GIST> STATIC INTERVAL = .5, .7

represent an ideally smooth continuation from one solution interval
to the next.

STEPSIZE is used to specify the "load steps", i.e., 1load factor
increments, to be used while traversing the forthcoming solution
interval. The specification is of the form:

STEPSIZE = incpa [,incpbl] ‘
where 'incpa' and 'incpb' are defined in equation <2>,. Again, these
are target values and may be adjusted by the program if convergence
is either too slow or too fast.

(NOTE: The program will not reduce the stepsize unless permitted
via the MAXCUT keyword.)

If the stepsizes happen to remain constant throughout the solution,
then the following relationship applies:

{F}i = {Falref * (pamin + (i-1)*incpa)
+ {Fblref * (pbmin + (i-1l)*incpb)
where "i" is the solut.ion "step number", an index which starts at 1,

and runs consecutlvely through all 59193193 iptervals. (The linear
solution, which is computed as an initial gqguess to solution step 1,

is referred to as solution step 0.)

The reason for allowing a different stepsize for each load system is
to enable nonproportional 1loading. For example, a cylindrical

GIST Tutorial / Part 2 PAGE 29
Section 2.2.2: Analysis Strategy (STATIC/NONLINEAR)

structure submerged under hydrostatic pressure (e.g., load system A)
might be subjected to an independently applied axial force (e.gq.,
load system R). 1In such a case, load system 'A' would probably be
applied first, incrementally, until the total pressure was achieved;
then load system 'B' would be applied, also incrementally, with
system 'A' held fixed, i.e., with 'incpa' = 0.

While stepsizes can often be rather large initially, they will

v usually require cutting as the load approaches a "critical® value,

3 . €e.g., a bifurcation point. The optimal stepsize will not only

s depend on the physics, but also on various other strategy parameters

’ such as the frequency of stiffness updates (NEWTON keyword) and the
. allowable convergence error (MAXERR keyword).

NEWTON is used to specify the frequency of stiffness updates in the
A forthcoming solution interval. The name derives from the fact that
; the user is actually specifying the form of "Newton 1linearization
algorithm” to be used., For example:

NEWTON = TRUE

.end lilteral

refers to the familiar "true Newton" algorithm in which the tangent
stiffness matrix is formed and refactored upon every iteration of
every solution step. This is a very expensive way to travel and
only

recommended for extremely unwieldly problems. A more practical

method,lthe "modified Newton" algorithm, may be selected via:
.litera

NEWTON = MOD, period .
where 'period' is the number of solution steps between successive
refactorings. For example, the so-called "one-step Newton" is
obtained via:

NEWTON = MOD,1

In this case the stiffness is updated (i.e., formed and factored) at
the beginning of every solution step. Note that no additional
stiffness updates are performed during equiliibrium iterations;
only the right-hand-side (i.e., the internal force vector) is
updated each iteration.

‘ ’ A slight variation on the modified Newton method is what we shall
call the "selective Newton" and is specified by:

NEWTON = SEL,max
where 'max' is the maximum number of stiffness updates permitted
.- during the solution interval, In this case, the program decides

when to refactor, (based on the observed convergence behavior and
other avajilable options) and does so until it reaches the specified

—— ——— | —————— SR .J

GIST Tutorial / Part 2 PAGE 30
Section 2.2.2: Analysis Strategy (STATIC/NONLINEAR)

limit, Again, refactorings will be made only at the beginning of a
prospective solution step.

At the lower extreme, the phrase:
NEWTON = FALSE

may be used to suppress all stiffness updating except upon restart.
(Presently, one stiffness update is performed at the beginning of
every solution interval, regardless of the NEWTON setting.)

The optimal frequency of stiffness updates will be influenced by the
stepsize, the convergence error tolerance and just how rapidly the
load-deflection "slope" is actually changing. Another aspect which
must be “factored"” in to the user's strateqgy is the computational
expense of stiffness formation + assembly + factorization, i.e., the
"gize” of the problem.

The remaining STATIC/NONLINEAR keywords are optional [as indicatedl.
They can, however, be extremely useful at times and hence warrant
some discussion,

START is used to tell the Analyzer how to begin, or "restart"™ the
next solution interval. The default setting is:

START = NEXT

which implies that the solution is to continue from where it left
off, employing the 1last computed solution step as the starting
approximation (possibly with extrapolation) for the first solution
step of the new interval.

To make this clearer; consider the following scenario: Suppose you
have successfully completed a solution interval, and the last
solution step saved in the database is step number 4. Now, you
issue the GIST command:

GIST> REVIEW ANALYSIS
and display the corresponding load factors, i.e.,

Curéent Analysis: Static/Nonlinear
Current Step : 4
Current Loads : PA=1]1,5, PB=2Q

Now, to advance the solution, the next specified interval must begin
with these locad factors. Hence the new strategy might be:

GIST Tutorial / Part 2 PAGE 31
Section 2.2.2: Analysis Strategy (STATIC/NONLINEAR)

GIST?> STATIC INTERVAL=1.5, 2.0 STEP=.25

Then, by default, solution step number 4 would become the starting
step for the new interval. 1If, on the other hand, the solution at
step 4 did not instill confidence (say, you had inadvertently passed
a bifurcation point) and you would like to repeat it with a smaller
stepsize, you might employ a strategy such as:

GIST)> STATIC INTERVAL=l.,2., STEP=.l1 START=FROM 3

where, in this case, the program is forced to restart from solution
step 3, which is presumabley is in the database and corresponds to
load factor PA = 1.,

Hence, by using the starting option:
START = FROM step

the user may redo any solution interval for which the necessary
starting solution steps are available.

The keyword, MAXCUT, is used to allow the program to cut, i.e.,
halve, the stepsize(s) when convergence difficulties arise., It
specifies the maximum number of allowable cuts. The default. option
is:

MAXCUT = 0
which does not allow any cuts to be made during the interval.

NOTE: The program may increase the stepsize(s) if convergence
occurs too easily. (For instance, if only 1 iteration is required
for convergence at two consecutive solution steps.)

MAXERR is used to change the maximum allowable value for the
equilibrium~iteration convergence-error. The default setting is:

MAXERR=,001

which means that the program will continue to iterate (generally, up
to 12 times) until the relative error in both displacement and force
vector norms is less than one-tenth of a percent.

NOTE: By setting MAXERR to some abnormally high value, e.g., 1.,
the program will be inhibited from performing iterations. 1If, in
addition, NEWTON = MOD,l, the resulting algorithm is then equivalent
to the <classical "incremental"™ approach to nonlinear equation
solving.

Py sk o v

GIST Tutorial / Part 2
Section 2.2.2: Analysis Strategy (STATIC/NONLINEAR)

EXTRAP is used to turn the solution extrapolation switch on or off.
By default, up to quadratic extrapolation is used at the beginning
of each solution step., That is, the previous 3 solution steps are
employed to obtain a first approximation of the displacement vector
for the new step. However this 1is not always desirable (or
possible, and so to inhibit extrapolation, the user may employ the
phrase:

EXTRAP=OFF

which causes the previous solution step to be directly used as the
initial iterate for the new solution step.

Finally, we arrive at the LIST and SAVE Kkeywords, which are common
4 to all of the strategy commands. They are used to control the flow
: of output from the STAGS Analyzer. LIST controls the amount of data
to be printed, while SAVE controls the amount of data to be archived
in the analysis database (see Section 2.4). The general
keyword-phrases are of the form:

LIST [/Item] = period

SAVE [/Item] = period

where 'period’' represents the number of solution steps .between
printing or saving, respectively (the value 0 turns the LIST or SAVE
option off completely).

For example, the default settings are:

which suppresses all solution data printout, but saves displacements
and stresses (plus stress resultants and strains) at every solution
step. This is probably the most convenient mode of operation
(disk—-space permitting) since: (1) all results can then be
displayed at the analyst's leisure via GIFTS interactive
postprocessing, and (2) by saving all solutions, the analyst
achieves maximum "restart” flexibility.

- ¢
, LIST = 0 SAVE/D = 1 SAVE/S = 1 i
1
E
;

Y NOTE: Excess solution data can later be discarded from the database
as described in Section 2.4.

With LIST=0, the printout emanating from the STAGS Analyzer will be
limited to the computational statistics of the solution process,
e.g., the number of iterations/refactorings actually performed at
- each solution step. This is just as well, since the STAGS printout
of displacements, stresses, etc, will not in general follow the
‘ gsame node and element ordering as the GIFTS pre- and post-
processors, and may therefore lead to confusion. (If you do use a

nonzero LIST option, employ Appendix A as an interpreter.)

e g o

GIST Tutorial / Part 2 PAGE 33
Section 2.2.2: Analysis Strategy

STATIC/LINEAR Strategy

There is really little strategy to speak of when it comes to 1linear
static analysis. The only pertinent command keywords are:

LOAD [LIST] [SAVE]

where LIST and SAVE are practically as defined for nonlinear static
analysis, and LOAD simply defines the load factors which are to be
applied to load systems A and B, i.e.,

LOAD = pa [,pbl
instead of combining the 2 load systems as in nonlinear static
analysis, they are kept separate, and 2 independent solutions are
obtained, the first corresponding to the applied load vector:
{Fa} = pa * {Falref
and the second to:
{Fb} = pb * {Fblref

where {Falref and {Fblref represent the load vectors corresponding
to load systems A and B, as defined during pre-processing (e.g.,

GIFTS load cases 1 and 2).

NOTE:

The user is reminded that, strictly speaking, LINEAR static response
analysis is valid only for problems characterized by "small",
elastic deformations. ‘

GIST Tutorial / Part 2 PAGE 34
Section 2.2.2: Analysis Strategy

DYNAMICANONLINEAR Strategy

A dynamic response analysis is usually performed to account for the
effects of rapidly varying loads and/or initial conditions. The
resulting equations of motion now include structural inertia and
damping oporators and hence require a temporal discretization
algorithm in addition to the finite element spatial discretization.
The STAGS Analyzer employs a variety of "direct" numerical
integration schemes to discretize the time domain, and thereby
"march®™ the solution through a sequence of "time steps™ (same as
"solution steps”).

If the problem contains nonlinearity, either geometric or material,
additional stiffness updates (i.e,, refactorings) and/or iteration
may be required at each step. If the problem is purely linear, the
solution is then achieved with neither of the above. Due to the
potentially high cost of a nonlinear dynamic response analysis, it
should be approached with both caution and understanding (cf.
(s1l).

Basically, the process of conducting a nonlinear dynamic analysis is
similar to that outlined for nonlinear static analysis, except that
instead of incrementing load factors, we increment the time, with
load factors following according to some prescribed historical
function. In addition, dynamic solution strategy requires the
selection of a "time integrator" and involves a few extra options
which have no counterpart in static analysis. :

Like nonlinear static analysis, dynamic analysis is usually
performed as a series of "solution intervals"™ (i.e., STAGS
executions), each of which may contain many solution steps.

Nonlinear dynamic solution intervals are prescribed with the
following strategy command. 4

DYNAMIC [/NONLINEAR])

which features the following set of "keywords" for parameter
definition:

INTERVAL STEPSIZE METHOD HISTORY NEWTON
{ START DAMPING MINDTS MAXDTS MAXERR LIST SAVE]

As usual, the unbracketed keywords require user specification while
the bracketed ones have default settings and are therefore optional.
Since many of the basic notions associated with these keywords have
already been discussed under "STATIC/NONLINEAR Strategy", we will
restrict our comments here to those features which are unique to
dynamic analysis,

INTERVAL and STEPSIZE are used in the same way as in nonlinear
static analysis strategy except that the parameters refer to time

e et ke

AT

-

GIST Tutorial / Part 2 PAGE 35
Section 2.2.2: Analysis Strategy (DYNAMIC/NONLINEAR)

interval (tmin, tmax) and time step (dt), respectively, rather than
to 1load interval and 1load step. The first solution interval is
usually kicked-off at 'tmin=0' and may employ initial displacements
and/or velocities (defined during pre-processing). The selection of
the stepsize, dt, is especially crucial in dynamic analysis with
respect to stability and accuracy considerations. Also, as
suggested in the STAGS Manual [Sl], a preliminary vibration analysis
may be required just to establish a "ballpark" time step.

A "key" keyword for dynamic strategy is METHOD, which declares the
time integration algorithm. Both the time stepsize and the
nonlinear solution strategy (see NEWTON) below) will depend strongly
on the choice of time integrator. The methods currently available
are:

METHOD=EXPLICIT

which corresponds to the explicit (2nd order) control difference
algorithm,

METHOD=TRAPEZOIDAL
which corresponds to the implicit (2nd order) trapezoidal rule
METHOD=GEAR

which corresponds to the implicit (2nd order accurate) Gear
algorithm and:

METHOD=PARK

which corresponds to the implicit (2nd order accurate) Park
algorithm.

The explicit method, by definition, requires no matrix
factorizations but may require prohibitively small stepsizes to
maintain stability. On the other hand, the implicit methods require
at least one matrix factorization, but permit exceptionally large
stepsizes.

As can be established from the literature, each of the above methods
may be considered superior for a particular class of problems. For
example, in "structural dynamics"”™ (i.e., low-frequency response)
situations, the PARK method is often recommended for nonlinear
systems, while the TRAPezoidal rule rule is hard to beat for 1linear
systems, Consule ({S1] and [s2] for additional guidance and
references,

The NEWTON keyword, which controls the frequency of tangent
»stiffness”™ updating has the same options and implications for
nonlinear dynamic analysis as it does for nonlinear static analysis;

GIST Tutorial / Part 2 PAGE 36
Section 2.2.2: Analysis Strategy (DYNAMIC/NONLINEAR)

1

with the following qualifications. First, if the time integration
algorithm (selected via METHOD) is explicit, then NEWTON becomes
irrelevant, since there is no tangent "stiffness” matrix in the
problem to update and factorize. Second, with regard to implicit
methods, since there are typically many more solution steps in
dynamic analysis than in static analysis, frequent matrix updating
may be cost-prohibitive, and, for a sufficiently small time step,
even unnecessary.

As mentioned earlier, the load "history" 1is part of the dynamic
strategy prescription. The reference load systems (A and B) have
- already been defined during pre-processing. What needs to be
3 specified here is the variation of their respective amplitudes,
; i.e., "load factors®, with time,

e, The keyword provided for this purpose is c¢alled HISTORY and is
: specified as follows:

HISTORY [/System] = Shape, coefficents

where 'Load-System' may be either 'A' or 'B', 'Shape' may be 'LIN'
(linear), 'EXPO' (exponential) or 'TRIG' (trigonometric), and
‘coefficients' represents a set of up to 6 constants which
- correspond to 'Shape' and together with it fully characterize the
! load factor vs. time function for the indicated load system.

where 'System' refers to the load system and may be either A or B;
'Shape' refers to the type of load-time function and may be LINEAR,
EXPONENTIAL, or TRIGONOMETRIC:;e and ‘coefficients' 1is a set of
values which, together with ‘'Shape', fully characterize the load
history.

3 ’”

The illustrations on the following page define the set of
‘coefficients' required for each of the allowable load history
'Shape's:

s

GIST Tutorial / Part 2 PAGE 37
Section 2.2.2: Analysis Strategy (DYNAMIC/NONLINEAR)

Load HISTORY Parameters

Leord
Faetor HISTORY = LINEAR, cl,c2,c3,c4,c5
CpAPS)
T [r :
!
EY e‘ {
. T' “"‘ l
?; ' C— e A
.?”? {
l'..f
= Load f HISTORY = TRIGONOMETRIC, cl,c2,c¢3,c4,¢5,c6
Factor
(Pﬁ,P&) C‘) :
‘ ~— &3 - = L
——es .
Ca — -
e Trme CE)

o Loend f —+ (JISTORY = EXPONENTIAL, cl,c2,c3,c4

~aelor
<P»)PB) Cy
; A
Co
* —
) —Cy>-C3 > 7me(2)
I
Remark

Admittedly, the current mechanism for defining the load history is

neither convenient, nor sufficiently general. A better procedure is
i not hard to imagine. For example, a graphically defined 1load-time
function capability could be introduced in one of the GIFTS
preprocessors, We hope to incorporate such improvements in future
versions of the system,

o o iGN L L i L o R

= GIST Tutorial / Part 2 PAGE 38
L , Section 2.2.2: Analysis Strategy (DYNAMIC/NONLINEAR)

The next DYNAMIC keyword is START. The description is identical to
the STATIC/NONLINEAR case except that a 'solution step' now refers
to a 'time step', rather than a 'load step'. Note that a re-START
may be accomplished from any previous solution step, providing it
has been saved in the database (see SAVE). However, if an 'm-step!
METHOD is being employed for time integration, a "smooth"
continuation will then be possible only if 'm' consecutive previous
solution steps are available,

For example, to pick up smoothly from step number 10 using PARK's

(3-step) method would require that solution steps 8, 9 and 10 all be

present in the database. Under normal circumstances this will be
. achieved automatically via the SAVE keyword (see below).

The next three (optional) keywords, DAMPING, MAXDTS and MINDTS, are
unique to DYNAMIC strategy. They are pretty well documented in
Section 1.5; however, a few additional comments are in order:

First, the parameter 'gamma' defined with the DAMPING keyword is
presently inactive. It is supposed to multiply a user-defined
diagonal damping matrix, However, there is no current mechanism for
the user to define such a matrix.

Regarding MINDTS and MAXDTS: The former is analogous to the STATIC
MAXCUT keyword except that instead of specifying the maximum number
of stepsize reductions, MINDTS specifies the minimum allowable time
step scale-factor (between 0 and 1). The latter keyword, MAXDTS,
specifies the maximum stepsize scale~factor (greater than or equal
to 1). Its presence 1is basically to enable the user to inhibit
automatic time-step increases, which might otherwise destroy the
required resolution of the response (or load history). Note that by
setting both MINDTS and MAXDTS to 1, a constant time-step 1is
assured.

,

Finally, we arrive again at the LIST and SAVE keywords (see STATIC
/NONLINEAR Strategy). The only additional comment required here is
that the 'D' qualifier, as in:

SAVE/D=period

refers not only to displacement vectors, but also includes velocity
vectors, acceleration vectors and whatever else is necessary for
subseguent restarts.

As a closing temark on the use of the DYNAMIC [/NONLINEAR] strategy
command, we note that a dynamic solution interval may be initiated
from a previously computed static solution. This will occur
automatically if the step number referenced with the START keyword
happens to correspond to a static solution step. The static
solution will then represent the "initial conditions"™ for the
dynamic analysis.

GIST Tutorial / Part 2 PAGE 39
Section 2.2.2: Analysis Strategy

DYNAMIGALINEAR Strategy

A linear dynamic response analysis is performed in the same manner
as a nonlinear dynamic response analysis, except that the linearity
is exploited by precluding any stiffness updates or iterations
between time steps.

Hence, the keywords used to set the /LINEAR Strategy are identical
to the /NONLINEAR keywords with the exception of NEWTON and MAXERR,
which have no relevance to linear dynamics.

Another distinguishing feature, of course, is that the selection of
a time integration METHOD may be quite different for linear and
nonlinear problems. Once again the reader is advised to consult
[S1], [S2], and references contained therein.

AD-A103 801 LOCKHEED MISSILES AND SPACE CO INC PALO ALTO CA PALO ==ETC F/6 13/13
INTERACTIVE NONLINEAR STRUCTURAL ANALYSIS? ENHANCEMENT.(U)
JUL 81 6 M STANLEY Nuuum-so-c-oau
UNCLASSIFIED LMSC=D811635

) A
[Ol] l...........

- - -

GIST Tutorial / Part 2 PAGE 40
Section 2.2.2: Analysis Strategy

BUCKRLING/LINE Strateqy

In this text, we use the term "buckling analysis" loosely to refer
to what is commonly called a "bifurcation buckling analysis", or
alternatively a "stability analysis®™. In any case, what we are
talking about is the generalized eigenvalue problem:

([Klref + eig * [Klgeom) * {d} = 0

where '[Klref' is (in the /LINEAR case) the linear stiffness matrix;
'[Klgeom®' is the so-called "geometric"” stiffness matrix, which is a
function of the pre-buckling (or "pre-stress”) state; and 'eig' and
'{d}' represent, respectively, one of the corresponding eigenvalues
and eigenvectors of the problem. The proper interpretation of 'eig'
is as a "critical®" load scale-factor which, when multiplied by the
load vector producing the (equilibrium) pre-buckling state yields an
estimated "buckling load". Formally, the definition is:

{Flcrit = eig * pa * {Falref

where '{Flcrit' is the critical, or buckling, load vector, '{Fajref'
is the reference load vector defined during pre-processing as "load
system A", and 'pa' is a corresponding load-factor which is defined
(arbitrarily) by the user as part of the buckling strateqy.

The qualifier, /LINEAR, implies that the pre-buckling configuration
is to be one which is the result of a linear static analysis. The
pre- buckling solution, however, is performed as an integral part of
the buckling analysis, rather than a priori (e.g., in a separate
STATIC/LINEAR analysis).

STAGS actually allows for an even more general form of the
eigenvalue problem (again for the /LINEAR case), i.e.,

([Klref + [Kblgeom + eig * [Kalgeom) * {d} = 0

where '([{Kalgeom' is the geometric stiffness due to a user-scaled
load- system A and '[Kblgeom' is the geometric stiffness due to a
user-scaled load-system B.

The result is that the critical load vector becomes:
{Flcrit = (eig * pa * {Falref) + (pb * {Fblref)

which answers the question: "“how much can load-system A be scaled,
given a fixed load system B, before the total 1load becomes
critical?” such an analysis would be useful, for instance, in
determining the axial buckling load of a cylindrical shell subjected
to a fixed internal pressure.

The "multi-load-system”™ form of the problem is activated
automatically by setting 'pb' greater than zero (see PRELOAD below).

GIST Tutorial / Part 2 PAGE 41
Section 2.2.2: Analysis Strategy (BUCKLING/LINEAR)

With the above discussion as background, we will examine the various
parameters used to define the buckling strategy. The strategy
command:

BUCKLING [/LINEARI]
features the following keywords:

PRELOAD MODES [RANGE SHIFT MAXERR LIST SAVE]

with default settings provided for those in brackets.

PRELOAD specifies the linear pre-buckling load factors for 1load
systems A and B via:

PRELOAD = pa [,pbl

The linear solutions for each of the two thusly-scaled load systems

will be computed independently by the analyzer and used in the
formation of the matrix eigenvalue problem presented above. 1

MODES specifies the maximum number of eigenvalues (and
corresponding) eigenvectors desired from the analysis. Typically,
only the first few ,i.e., the lowest, <critical 1loads are of
interest, but there are cases when it will be safer to request more
than are actually desired -- for example, to sort out some
unexpected "spurious nodes" (see [S2]). Note that the eigenvalues
('eig') are extracted in order of increasing absolute value, or
distance from some specified shift value.

The next two keywords, RANGE and SHIFT, enable the analyst to focus '
in on a particular neighborhood where the eigenvalues are expected j
to lie, or cluster. By specifying:

RANGE = eigmin, eigmax
the eigenspectrum origin will be shifted from 0 to the point:

eigcen = (eigmin + eigmax)/2

and eigenvalues will then be extracted in order of increasing
distance from 'eigcen'. Furthermore, ‘'eigmin' and 'eigmax' are
treated as an upper and lower bound, so that the eigenvalue
extraction process will automatically cease when all eigenvalues in
the specified range have been determined. Alternatively,

SHIFT = target

also causes a direct eigenspectrum shift, i.e., to the value

GIST Tutorial / Part 2 PAGE 42
Section 2.2.2: Analysis Strategy (BUCKLING/LINEAR)

'target', but sets no upper or lower bound on the eigenvalues thus
obtained. Hence, the maximum number of modes extracted is then
equal to the number indicated by MODES. (Note that the RANGE option
supercedes the SHIFT option.)

The relative accuracy of eigenvalue computation is governed by the
keyword, MAXERR, which specifies the maximum acceptable convergence
error, The default setting is:

MAXERR = 1.E-5

Note that when the lowest eigenvalues have converged according to
the MAXERR criterion some of the higher ones may be "practically”
converged and will be available from the output 1listing (see the
LIST keyword).

LIST and SAVE control the output emanating from the STAGS analyzer.
As in other types of analysis strategy, LIST controls the direct
printout from the analyzer and SAVE controls the amount of solution
data to be archived in the database. If nothing is specified, the
default settings are:

LIST/I = 1 LIST/D = 0
and:
SAVE/D = 1

which causes only the eigenvalues and intermediate iteration data to
be printed directly, while both the eigenvalues and eigenvectors are
saved in the database. The rationale is that the evaluation of
displacement modes is much more effectively performed via
interactive post-processing (see Section 2.3). Note also that a
full STAGS displacement vector printout may require some unravelling
(as described in Appendix A) and is therefore not recommended except
perhaps as a diagnostic tool (or as a "security blanket").

BUCKRLING/NONLINEAR Strategy

This analysis option, which is supposed to assess stabllzty with
respect to a nonlinearly stressed configuration is ‘“presently
ino atjive"

GIST Tutorial / Part 2
Section 2.2.2: Analysis Strategy

VIBRATION £ LINEAR Strategy

The discussion here is meant to complement the discussion of
BUCKLING /LINEAR strategy. These are both structural eigenvalue
analyses, but with different interpretations and restrictions. A
STAGS "vibration analysis"™ determines the natural frequencies and
corresponding displacement modes corresponding to "small®™ vibrations
about some equilibrium reference configuration. The qualifier
/LINEAR further indicates that the equilibrium configuration to be
employed shall be the "unstressed" state.

Formally, the eigenvalue problem may be expressed as:
([Klref - eig * [M]) * {4} = 0

where [Klref is the linear stiffness matrix; [M] is the mass matrix;
{d} represents a displacement mode vector, and 'eig', a
corresponding .
eigenvalue. The eigenvalue is "physically" defined by:

eig = (2*pi*f) *%*2
where 'f' is the natural frequency in cycCles per second (cps). Note
that when preparing vibration strategy, the analyst should refer to
'£' as if it were the eigenvalue.
The vibration strateqgy command:

VIBRATION [/LINEAR]

features the same Keywords as BUCKLING/LINEAR except that the
BUCKLING keyword, PRELOAD, is absent. The list is therefore:

MODES [RANGE SHIFT MAXERR LIST SAVE]

The absence of PRELOAD simply reflects the fact that no pre-stress
state 1is required for a "linear™ vibration analysis. 1In fact, any
load systems defined during pre-processing will just be ignored.

For a discussion of the remaining keywords, refer to the paragraphs
under BUCKLING/LINEAR Strategy with the following qualifications:

First, as mentioned above, the eigenvalue parameter, 'eig', in the
buckling discussion translates as 'f' (natural frequency in cps)
when discussing vibration analysis. Note that the natural
frequencies are output directly from the analyzer and thus require
no further interpretation.

Second, the eigenvalue shift induced by the RANGE keyword is no
longer to the center of the interval (eigmin,eigmax], but instead to
the point:

fshift = SQRT ((fmin**2 + fmax**2)/2)

where 'fmin' and ‘'fmax' are specified bounds on the natural

GIST Tutorial / Part 2

PAGE 44
Section 2.2.2:

Analysis Strategy (VIBRATION/LINEAR)

frequency (in cps).

VIBRATIONANONLINEAR Strateqy

This analysis option, which is supposed to determine natural

frequencies and corresponding "small" vibration modes with respect
to a nonlinearly stressed configuration is presentlyv

GIST Tutorial / Part 2 PAGE 45
Section 2.2: The Analysis Phase

2.2.3 ANALYSIS COMPUTATION

As soon as the strategy for the forthcoming solution interval has
been completely prescribed and verified (as discussed in the
previous subsection), the analyst may invoke the STAGS analyzer to
act on that strategy via:

GIST?> COMPUTE

Interactive Gomputatjion

The above GIST command, by default, will lead directly to on-line
computation by the analyzer. This is the most "interactive" mode of
operation, since the solution interval is then monitored directly
from the screen and may be advanced or revised without delay.

Batch Computation For large-scale problems, on-line computation may
be undesirable, due to either the time or cost involved. 1In such
cases, the solution interval may be processed in a "batch"™ mode,
via:

GIST?> COMPUTE/BATCH Parameters...

Wwith this form of the command, an operating system procedure to
perform the desired computation is automatically prepared and
submitted, as a "batch run", to a "batch queue" where it will await
execution, The analyst may then continue interacting (on a
restricted basis) with GIST while the solution interval is being
processed independently. .

In the present implementation of the network, the "analysis"
database automatically "locks"™ to the interactive user when a GIST
batch run is in progress. This means that the user will be
restricted from checking analysis status, defining or reviewing
strategy, or processing any new solutions until the batch run has
terminated. However, the user may continue to postprocess "old"
results even during a batch solution interval (see Section 2.3).

Another condition for batch processing is that the USER MUST MONITOR
THE STATUS OF A GIST BATCH-RUN MANUALLY, i.e., through the computer
operating system., When the COMPUTE/BATCH command is issued, a
"batch run identification number” (or "run ID") should appear on the
screen, To find out where the corresponding batch run is, (e.q.,
waiting to execute, executing, waiting to print or finished) the
user must exit from GIST and make the inquiry directly to the
computer operating system, employing the "run ID" for proper
identification. (The form of this request will vary from computer
to computer.) Finally, when the user is sure that the batch job has
finished, the GIST command:

GISTD?> CLEAR BATCH

Y |

GIST Tutorial / Part 2 PAGE 46
Section 2.2.3: Analysis Computation

may be issued to "unlock"™ the analysis database for interactive
processing. (The whole procedure isn't as cumbersome as it sounds.
The excuse for not synchronizing batch and interactive operations
automatically is the tremendous degree of machine-dependence
currently associated with such a task.)

, Computer Qutput

Printed output from the STAGS analyzer is controlled by setting the
LIST keyword under any of the strategy commands discussed in Section
: 2.2.2. By default, all physical results, e.g., displacements and
g stresses, are suppressed from direct printout, and only a summary of
s computational statistics is displayed as the solution progresses.

- By saving the physical results in the database at sufficiently
- frequent intervals (via the strategy keyword: SAVE), they may then
2, | be viewed at the analyst's leisure, i.e., in a relaxed,
; interactive-graphics postprocessing mode (see Section 2.3). Hence,
there is usually no need for extensive analyzer-printout. However,
if such a need arises, the output may be disposed to a permanent
file (rather than say directly to the screen or the printer) by
employing the OUTPUT keyword, e.q.,

- GIST)> COMPUTE OUTPUT = Filename
or:

GIST?> COMPUTE/BATCH OUTPUT = Filename...

Computational “Revjew”

While between solution intervals and before actually getting into a
formal postprocessing phase, the user may monitor the "status" of
the solution by employing the GIST 'REVIEW' command. For example,

GIST?> REVIEW ANALYSIS

will display the current analysis type, solution step number, and
corresponding time/load-factors., For an informative, chronological
look at what has been accumulated in the database, simply add the
N /TOC qualifier, e.qg.,

GISTD? > REVIEW/TOC ANALYSIS

which is elucidated upon in Section 2.4. Finally, computational
statistics may be reviewed via:

- GIST?> REVIEW SOLUTION = steps

GIST Tutorial / Part 2 PAGE 60
Section 2.4.1: The Database

where 'Job' is symbolic for the actual Jobname.

Note that the above files must be maintained on disk throughout the
analysis as they are required for both interactive pre- and post-
processing.

The data within these files is stored and manipulated automatically
by the GIFTS processors, i.e., BULKM, EDITM, BULKLB and EDITLB.
However, for a detailed description of the data structures and
access method employed in GIFTS data management, the interested
reader is referred to the GIFTS Systems Manual (Section 1II: The
Unified Database),. Such knowledge 1is usually only required when
developing interface software o~ for debugging system errors.

The Analysis Database

The analysis database consists of 1 general purpose file which
contains a number of named "data-sets". (This type of file is also
referred to as a "data library”, or a DAL file [N3].) The file name
is of the form:

Job .STG

where the extension, STG, is an abbreviation for STAGS. The
following data-sets are (potentially) stored in the STG file:

File: 'Jobname’.STG

Data-set Name }

STAG. STAT. 0. 0 | STAGS problem status parameters
STAG.MATL. 0. 0 | Material properties

STAG.FABR. type. 0 | Fabrication properties (1D/2D)
STAG.CONF.unit. 0 | Structural configuration (reference)
STAG.LOAD.syst. 0 | Load system 'syst' vectors
STAG.DOFS.vers. 0 [Degree of freedom map

STAG. ICON. type. 0 | Initial conditions ('type'=0: displ:

'type'sl: veloc)
Solution strategy parameters
Solution statistics for step 'step'
Displacement vector at step 'step’
Velocity vector " " "
Stresses, strains, etc.
Plasticity data
Dynamic auxiliary vectors
Mode vector no. 'mode’
Internal force vector

STAG. STRA.vVers. o
STAG. SOLN., 0.step
STAG.DISP. 0.step
STAG.VELO. 0.step
STAG. STRE. 0.step
STAG.PLAS. 0.step
STAG.AUXI. 0.step
STAG.MODE.mode, step
STAG.FORC. 0.step

— — e

o e Al i LR
i, P ‘

s,

5

o au

-

% o 2

GIST Tutorial / Part 2 PAGE 61
Section 2.4.1: The Database

The STG file is created by the STAGS Preanalyzer (STAGSl) and
extended during the analysis by the STAGS Analyzer (STAGS2). The
data-sets created by the Pre-analyzer (i.e., STAT through ICON) are
stored automatically. The solution data-sets generated by the
Analyzer, however, e.g., DISP, VELO, STRE, and so forth, may be
selectively archived as explained under Strategy in Section 2.2 (cf.
the SAVE keyword).

The user is reminded that a reasonable frequency of solution data-
archival 1is required for satisfactory postprocessing and restart
capability. Since this particular file has a tendency to grow
without bound (especially in a nonlinear or dynhamic response
analysis) it may be necessary to compress it every so often, as
described in Subsection 2.4.4.

A detailed description of the STG file (for software afficianados)
may be found in Appendix B of this tutorial.

In addition to the STG file, the analysis database may (i.e., for
most implementations of the system) contain a special file which is
used as an intermediary between the Pre-Analyzer and the Analyzer
(alias STAGS1 and STAGS2). This file will appear with the name:

Job .SIN

Although it may initially seem quite substantial in size with
respect to the STG file, the SIN file, once created by the
Pre-Analyzer, will never expand., It contains a computationally
primed version of the element kinematic and constitutive data (as
discussed in Subsection 2.2.1) which“is utilized by the Analyzer at
the start of each solution interval. Furthermore, if the file is
destroyed (or misplaced) it can always by regenerated simply by
rerunning the Pre-Analyzer via

The SETUP command. (Note: The SIN file will not appear in
implementations of the system which "hard-wire" the Pre-aAnalyzer and
the Analyzer together as one COMPUTE operation.)

e

A DR I

T T T T T T Wy TrLwEEe

—g T~ R
~ v

GIST Tutorial / Part 2 PAGE 62
Section 2.4.1: The Database

The Post-processing Database

The post-processing database consists of a set of transient files
which are used exclusively by the GIFTS result display module
(RESULT). The potential members of this database are:

File Name | contents

Displacement~type vectors corresponding to
a sequence of solution steps.

Job .DNS

Stress-type data corresponding to the same

Job .STR
sequence of solution steps as in .DNS.

The DNS and STR files are created at the time RESULT is invoked from :
the GIST Control Module. As explained in Section 2.3, the ‘
STAGS->GIFTS Adaptor (S2G) is at that time employed (by default) to
transfer a prescribed set of solutions from the analysis database to
the post~- processing database in an appropriate GIFTS format. The
post-processing files are re-Created upon each new RESULT session
(unless the /OLD qualifier is used) and the analysis database is
left unperturbed. Hence, the post-processing database may be viewed
simply as a movable window to the analysis database.

Note that the DNS and STR files are not in themselves sufficient for
GIFTS postprocessing; the pre-processing database must be present
as well to maintain the definition of the basic model.

The formal description of the internal data structures for DNS and
STR, though not usually required by the user, per se, is available
in the GIFTS System Manual (under "The Unified Database").

Remack

The actual form of the file names appearing in the Job database will
depend, of course, on operating system conventions. For example, if
the Jobname is 'TEST', the Job database would consist of files such
as TEST.PAR, TEST.PTS, TEST.STG, etc. on a VAX/VMs installation;
whereas the same files would be named TESTPAR, TESTPTS, TESTSTG,
etc. on a CDC/NOS installation. ’

GIST Tutorial / Part 2 PAGE 63
Section 2.4: Database Management

2.4.2 MONITORING THE DATABASE; THE 'REVIEW/TOC' COMMAND

By employing the GIST REVIEW command with the /TOC qualifier, the
user may list, in various ways, the current database
"table-of-contents”.

For example, by entering:
GIST> REVIEW/TOC JOB

the Job database is summarized by 1listing all files currently
assigned to the Job.

Similarly:
GIST> REVIEW/TOC PREP

lists those files corresponding to the pre-processing database, and:
GIST?> REVIEW/TOC POST

lists those files corresponding to the postprocessing database.

A somewhat more detailed 1listing 1is available £for the analysis
database, via:

GIST> REVIEW/TOC ANALYSIS

which produces a tabulated 1listing of all data-sets currently
residing in the 'Job!'.STG file. The analysis database
"table-of-contents" provides, to some extent, an historical progress
record. All successfully archived solution data-sets are listed in
chronological order, and feature such statistics as size, date and
time of creation. Thus, the user may verify (at a glance) what is
available for postprocessing and/or solution continuation, and what
is not. More specific information at a particular solution step can
then be obtained via the REVIEW SOLUTION form of the command, as
described in Subsection 2,3.2.

Remark

The REVIEW command provides a convenient mechanism for monitoring
the accumulation of data during an analysis. To examine the
database in any greater detail, or to "control" the propagation of
data, the user will have to use one of the interactive database
managers described in Subsection 2.4.3.

POREN

GIST Tutorial / Part 2 PAGE 64
Section 2.4: Database Management

2.4.3 CLEANING-UP AFTER YOURSELF; THE 'CLEAR' COMMAND

Since the database can require (at times) a substantial disk
allocation, the user might be interested in a "magic button” which
will make it all disappear, e.g., at the end of an analysis, or
perhaps after a false start. Such a button is to be found in the
GIST' CLEAR command, when used as follows:

CLEAR JOB will eliminate the entire Job database, i.e., all files
generated under the current Jobname. The list of potential files
was given in Subsection 2.4.1.

CLEAR PREPROCESSING will eliminate only those files associated with
the pre-processing database. This is not a recommended opotion, as
the analysis and postprocessing databases (if they exist) will be
rendered useless for subsequent interactive pre-/postprocessing.

GLEAR ANALYSIS will elimnate the analysis database associated with
the current Job, i.e., the STG (and SIN) file(s). This option might
be used, for instance, to re-initiate the entire solution process
without forfeiting the model definition.

GLBEAR POSTPROGESSING will eliminate the postprocessing database
associated with the current Job.” This is a very safe option
(although rarely necessary) since the postprocessing database
contains only "reformatted copies"™ of various solutions from the
analysis database. Hence, as long as the comprehensive analysis
database is available, the post-processing database can always be
regenerated. (In fact, the post-processing database is intended to
have a rapid turnover; it is automatically destroyed and recreated
each time the GIST command: RESULT[/NEW] is succesfully employed.)

Remack

Any of the database files may also be deleted (or itemized)
externally, i.e., by employing the computer operating system, which
usually has a set of commands for this purpose. However, the GIST
'CLEAR' command is usually more convenient and less hazardous, since
the user is spared from having to refer to each of the individual
file names,

GIST Tutorial / Part 2 PAGE 65
Section 2.4: Database Management

2.4.4 "EDITING" THE DATABASE; THE 'MANAGE' COMMAND

The GIST network provides a couple of interactive database managers
which may be employed by the user to effectively "edit" the database
(if the need arises). By "edit", we refer to such operations as
disabling and enabling individual data-sets, data compression (e.gq.,
removing unwanted data-sets to drastically reduce file size),
copying data-sets from one file to another, and obtaining detailed
data=listing (or "dump") capability.

These database "editors®™ are invoked by using the GIST command:
MANAGE { GIFTS | STAGS }

where the options, GIFTS and STAGS, each 1lead to an independent
processor as will now be explained.

MANAGE GIETS invokes an interactive processor called 'DUMP' which
may be employed to list in detail, or "dump”, any file in the pre-
and postprocessing databases. The DUMP processor may be considered
a member of the GIFTS family (as are the pre- and post- processing
files) and consequently must be driven via the GIFTS command
language. However, the relevant GIFTS commands are easy to
remember, For example: 'DMPPAR' will dump the contents of the PAR
file, 'DMPPTS' will dump the contents of the PTS file, etc.
Furthermore, the GIFTS 'LPON' command may be used to divert the data
listings to the line-printer.

For more information on this processor, the user is referred to
(Gl,G4]. Note that DUMP is primarily intended for software
development and debugging purposes, but the user/analyst should at
least know of its existence.

MANAGE STAGS will invoke an interactive processor called 'CLAUDE'
which may be employed to do just about anything with the analysis
database. CLAUDE is truly a database editor, in the sense described
at the beginning of this subsection. It is designed to operate on
DAL-type files [Nll, of which the STAGS-generated STG file is one,.
Besides providing extremely selective data-listing options, its most
important capability (in the context of GIST) is data-set
manipulation, For example, the user may employ CLAUDE to create a
new, reduced analysis database (i.e.,, STG file) from one which has
become unnecessarily bloated with solution steps. This is performed
by selectively copying data-sets from the old file to the new file.
Hence, it should only be performed by users who are well aware of
the significance of the various STG data-sets (see Appendix B). In
other words, CLAUDE is not for the casual user.

Regarding the operation of CLAUDE, i.e., learning and understanding
its command language, a comprehensive manual should soon be

it

1

w
]

A

o ar e i i MR

oRh i e b -

] GIST Tutorial / Part 2
! Section 2.4.4: “Editing"™ the Database

available. 1In the meantime, there is considerable
documentation available. Just follow the sequence:

to

GIST)> MANAGE STAGS
CLAUDE > HELP

its logical conclusion.

PAGE 66

on-line HELP

P

GIST Tutorial / Part 2 PAGE 67
GIST Structural Analysis

2.5 INTERACTIVE SAMPLE CASES

In this section, we present the complete interactive dialogue for a
set of very simple structural analyses performed with the GIST
system, These "sample cases” are intended for two purposes: (1) to
give the prospective user a glimpse of the actual system in
operation, while filling in on many of the details suggested in
previous sections, and (2) to serve as a "check-out" procedure for
new installations of the system, i.e., by having the user enter all
of the indicated commands and verify all of the corresponding
program responses, before going on to perform more meaningful
analyses.

2.5.1 SAMPLE CASE 1: NONLINEAR STATIC ANALYSIS OF A CLAMPED PLATE

b4
i
1777117777777 /77/77777777777
[mm——————————— -— ———— z
/1 4 3 1/ | uniform pressure = 100psi
/| I/ e e O T L
a I/ O e e I O D A
5." /1 I/ I e ———————— -> {
/1 1/ X :
/1 1/ Young's modulus = 1.E7
/11 2 1/ Poisson's ratio = ,3
------ -> Thickness = ,1
1/11777/7777717777/777777777777 x

10."

The setup is as shown above. We are going to generate a flat
rectangular plate, clamp it on all four sides, and apply a uniform
pressure in a series of statically incremented steps. The user is
urged to follow the various transitions from pre-processing to
analysis to postprocessing phases, as presented on the following
pages, and to reproduce the results at the first possible
opportunity.

Wwitng < 1S 19
1IN0 : d713H ! GHUUWOD

U/N °°°°"°"°° AUIdSIA THiO0dW3L
a33IA038 “°°°"°°°° AUIHSIA WILHdS
snieijg syse)] burssaosoudysoyd

aINO3y °°°° NOILYLNGHNOD NOILINT0S
GRINDIN °°°°°° A931YALS NOILNT0S
aNINOIY *°°°°°" .dNL13S. SISATUNY

snielg syse| stshjeuy
dIIN03IY °°°°° SNOTLIANOD AdUdHNOd W
a33IA03d """ """ " HOILYM3IN3ID duo1. K
d33IN038 "°°°°°°° NOILUN3INIS 13a0u

snjejg syse) buissasoudauy

f 3197d 1 Sni1Yls gao0f <O m

g0f M3IA3Y ¢ 1 S I 9
1IN0 ¢ d73H ! GHUWWOD

gof M3N O

31Y7d :aweuqor
~HJ0MIIN GIYIS/S14I9 Yy 03 awod|ap,

T UOISJap [SISATUHY TENIONNLS JATIOVYIINI-S3IHAYYT 3 1 S 1 9 «»

o

1073d /N9/NV/HA

WwI‘vEN‘E2N 2T I/31Hd
raryo

1‘1/vd0/7A139

1° 717 T°H13

€° ‘23°T ‘°0088T /1/ €‘1UBW3
S 1'v/1p

S vEsvEN

S E‘2/€21

S 2t/21
3NITS

‘S‘tasp

-} 94

)) 2L

‘a1

INIOdX

d31Y340 ONI3d 3197d ‘dof

BAAAAARAAAAARARARREREAANANR

31Yd :gof

[dOL1YY¥3HI9 3A0U XING 3 WATITNE <O

€8°S/S1419

|—eo+3000°6 —|
e8+3928°8 2
—09+3000°S——
29+3008°0 A
—10+3000" 1——
@0+3000°9 X
—SLINIT101d~
——92+3000 " 1T
"1SIQ 9NIMITA
1 ma
| :°¥1Q M3TIA_|
SIWUN QI¥9
SINIOd AN

A
13a0u
_ 211
2 1
€21 319d 1{a)
€ vE ¢
1IN0 x

- -

L -
A AR Y

“

107d =

N3 %

Nd *x
SIN3W3T3 x

319d :dor
€8°6/51419 { 401143 T3d0U 1 HW1Tad3 «»

TMIIGI C 1 ST H9
. 1INO : d13H : QHUWWOD

fTeTTTTTeoCT G3SYD ONIAUOT
ceerecseenet e GGG IODINL
cececnetcitee e T EUTINTIUM
R R S s T a s
R AR R Ry
seescecceretecs S1uTO0d AN
R R e
TTefttoTTeeeTTt SQIN9 QINO0S
ettt GQIY9 3DYANNS
©TTTT°" SNOISN3WIG WILYdS

MO T TNV~ ®
N -t

(3MYd]) SNLYLS T3ad0uU O

d3dd MIIA3¥ < 1 S 19
1IN0 : Jd73H4 : QUUYII0D

| 80+3800°0 —|
82+3800°0 2
—88+3000 ' S——
28+3208°0 A
—18+3000° I——
88+3000°0 X
—SLINIT107d™
|——o2+3000" 1—
"1SIQ 9NIM3IA
L.
T°¥IQ M3ITA
"SON™ *1713
"SON ¥35N

13404

61

81

21

91

ooocee TIIIlIT O €0+30000°0 00+38B8S2°E 80+3088S°L G2
0oeeed TITIIT O ¢0+30000°8 0O+389SL°E ©0+38880°S V2
0B0cpa TIIIITT O €0+38003°0 00+300SL°E 0B3+308BS°2 €2
008808 TIIIIIT © 08+30000°8 00+3880S°2 00+3880S°2 22
0poeea TIIITT O 00+30000°0 008+3008S°2 @0+30@82°S 12
06oCoa TITITIT O ¢0+30000°0 00+3088S°Z2 B80+3080S°2 @2
000000 TITIIT O 00+30000°0 00+308S2°7 08+3000S°. 61
0000BB TITIIT O 00+30000°0 00+390S2°T 0B+300860°S 87
0voRee 1ITITIT O 00+30000°0 00+300S2°1T 00+3000S°2 21
06000 TIIITIT O 00+30000°0 00+300S2°T ©6+30000°8 91
Po0oea TITITT @ 00+30000°G 08+3800S°Z2 00+30808°68 St
000eee TIITIT O 00+30000°8 0O+300S2°E ©0+30008°0 V1
000000 TITITT- O 00+30000°0 00+30000°S 00+30808S°2 EI
e00BBe8 1rIITr O 00+30000°0 0©08+30000°S 0P+30000°S 2T
@000 TITITT O 00+30800°0 00+30000°S ©0+3000S°2 I
0ooeed t1iilrl O 00+30000°0 0OB+300S2°E 18+30888°1 01
000008 TIIIIT O 00+30000°0 00+3000S°2 10+30000°1 6
000000 TITITIIT @ 00+30000°6 00+300S2°T7T 10+30600°T 8
0000Ba TITIITT @ 008+30000°0 00+30000°0 80+3000S°L 2
eo0e@0 TTIITIT O 00+30000°8 00+38880°0 00+30064°S 9
00dle8 11111 © 08+30088°8 00+30080°0 00+3000S°2 S
-------000000 TITITT O 008+30000°0 00+30888°S 00+30008°0 v
£0°S/51000080 TITITT @ 00+30000°8 ©€8+30080°S 10+30008°T €
-------000BB8 TITIIT O 00+430000°0 08+30800°0 10+38088°T 2
00ease TITITI O 00+30000°0 00+30080°6 00+30000°86 1
adn diu d3a 4 A X dN
¥ 39ud GE:6E:22 18-NN[-S 3ivd:aor
8ar ‘T <
diNI =
340399d x

BE:bV:22

Y d - AS 9
1 39yd - B2ivpy:az

€ 1T er &2
1T 21 S22 ¢v2
2t EVT ¥v2 €2
ET v €2 v
Bt <2 6 =04
G2 v2 22 12
p2 €2 12 @2
€2 I @2 &I
6 22 8 61
22 12 61 81
12 82 81 1
82 st 21 91
8 61 2 2

61 81 2 9
\ 81 21 9 S
91 s 1
Sa3NY0D
T 3%d 23:¥p 322

1IN0 =

18-3000°1

S3INTYA SSINADIHL

T
HiM

18-NNf-S 31Y1d4:4d0f
00aT ‘T <
13NI x

98-300S°9 VO-36EE°Z. $vO+300D0°1 90+39VB°E 1P-3800°E 2L0+3060°7

*
| S ¢

A 3 dAl WN
18-NNL-S 3lyd-gor
eent‘t <

WANI x

v80-4
y40-4
40-4
y40-4
vq0-4
pd0-4
y40-4
va0-4
»80-4
v40-4
va0-4
ya0-4
v80-4
va0-4
vg0-4
va0-4
3dAl

-

Ot vt ot vl vt v v et ot v v v e v et v
Eud—oq—cq—c—a-—c—oﬁ«—c—c—o«
&vvcvvcvvvvvvvvvv
gvvvvvvvvvvvvvvvv

x
£
z
a.

%
9t
St
v

“NMITON-0O0N

13N

3lyd:aor
egaT ‘1 <
NI x

*831-‘ 081~ “-"pa1-‘"001-

11no

3ivd
93au01

|44

veET

€21

21

1dns

¥ 354YD ONIQUO
3iud :€0f

RAAAAARANASR

€0°S/S1419 [¥01Uy3HI9 J28,aU0T X INg 1

g1Ix1ng <«K»

MBI TNVNO~~D
0 -

f 3164 1

“gWNd < 1L S 19
LINO § d13H ¢ ANUWKOD

*** S354) I9NIQUOT
Tt T S3SSINAIIHL
Tttt STYIN3LUW
Tttt SIN3W3INI

® @ @8 » ¢ 8 0 " munoz
©°°°T" GINIOd A3A
TTTTTTT OGANIT A

Tttt SQIyd 4I10s

sreescercess gQIY9 IDYAUNS
“c-c° GNOISNIUIO WILYdS

SN1Y1lLS T3A0H O

d3yd MIIAW C 1 S 19
1100 : d13H | GNUYWWOD

powere

107d x
ay-‘82- <
Al0Y x
SIN3NITI =
T 354D 9SHIAYOT

3lvd ‘80f

€0°S/S1419 [301103 2d-/0V07 1] 8T1Id3 <«

“daN143 <C 1S 19
1IN0 : dI3H : QUULLOD

 __80+3800°0 ——] \l
80+30C0°0 2 13004
—00+3000°6——
80+43000°0 A
—10+3000° 1T——
80+43000°0 X
—SI1IHIT 1074
02430080 ° 1—
*1SId 9NIMIIA
9c YA v9
2 310 M3IIA

Savo

X— |
Sayol “id 1071d734NU8178/313TYDS %
x

107d Qquon T 354D 9NIQUO c0+3020

R~y

—80+3800°0
809+3000°6 Z
—80+3809 "S——
e0+3808°'0 A
—10+3008° 1T——
09+3000°0 X
“TSI1INITT10d™

—82+3808° T
“1S1d SNIM3IA
—92 22-— ¥9
$TNIA M3IA

T UNOILUISHYYL]

107d WOA3334

\l
T3a0ou

T 354D SNIAYO1

10714784108 =

—88¢3000°0 ——]
ge+3ee8’'e 2z
—80+3809°'G—
00+3008°6 A

—10+38080 " 1—
09+3800°0 X
—S1IINIT10d™

——92+3000° 1

"1SIA ONIM3IA

Jc 22- v9
:Td3Id M3IA

[wHoIlYioN |

\l
13004

107d HOA33y4

354D 9HIQUON

CL

P

1

880000
€ocee0
15173317
008800
0006080
0800060
0060800
000000
080090
000600
0800600
000e0e
006000
080000
000020
0600480
00BB0Y
880000
8515150
8600aa
0600080
006800
60608308
000000
8300080
ad
30ud

TILTTY
122549
192824
292299
122222
[2298 %4
TTIT1Y
128821
12992 8¢
080000
860000
000080
000000
800000
%1% 1518]8)5)
€000y
008090
800000
8008000
808000
008803
060909
eaauan
0060800
088000
ddil 434
6E:12:E2

OO0V OCAICOCNOSS

£0+30000°8
83+3CBLA"0
CB+335ca°0
€C0+30C02°9
©3+30008°0
g3+30660°0
83+300€0°0
00+30000°09
09+30000°0
00+30000°0
00+30000°0
84+30000°0
83+30000°0
00+30000°0
80+30000°0
09+30000°0
89+30000°0
89+30000°0
82+30008°0
©92+30000°8
€5+38068°09
60+30080°0
C3+38000°0
02+33080°0
60+30600°0
z

60+380S2 "€
884320852 "E
@0+328S2 "€
09+30805 "2
88+3C0085°2
@8+30005 "2
88+30052° 1
03+38852" 1
80+30852 1
68+300S2° 1
80+30005 °2
80+300S.°€
20+30000°S
80+38000°S
@0+30008°S
BO+330S2 €
@8+3000S 2
80+30052° 1
08+30000°0
@8+300C0 "0
80+30000°0
e0+30080°S
88+33200°S
00+30800 "0
€8+30000°0
A
18-NNL-b

00+3800S°2
80+32000°S
€8+30088Ss "2
©0+308005° 2
00+38000°S
88+3600S°2
00+3800S° 2
08+30080°S
00+3080aS°2
00+30080°0
©0+302080°0
00+30808°0
08+3000S°2
00+30000°S
80+3000S° 2
10+30000°1
18+30000°1
10+30000° 1
00+3000S°2
00+30800°S
60+3800S°¢
@3+3C000°9
10+3CC08°1
18+30880°1
60+38000 0
X

“NMITINWVN-DON

dN

3iyd:daor

0BT ‘T/d4HI =
43039Y9d =

x

b
3
1
A

rd |
T 39ud

‘e
‘0
‘Q
‘9
‘8
‘9
%)
‘B
‘0
)
‘0
‘Q
‘9
‘0
‘9
‘8
‘Q
‘e
‘0
‘0
‘0
‘0
‘9
‘0
‘0
AW
61:22:€2

Xy

20+3621 "€-
20+3621 "€-
20+3621 "€~
20+3521 "E-
20+3521 "€~
20+3521 "€~
2843521 "€~
20+3521 "€~
26+3621"E-
2B+3E95°T-
20+3E95°T-
20+3€95°1-
20+3E95°1-
20+3E95°T-
20+3€95°1-
20+3E9S 1~
28+3€9S " T-
20+3E95°1-
20+3E95 "1~
20+3E95°1-
20+3E95° 1~
20+32v0° 1-
10+3002°S-
20+32v0° 1~
16+3092°S-
ZA

SQyo1
T 3SYJ SNIAUON

‘0
‘e
‘0
‘0
‘0
‘8
‘a
‘8
‘8
‘o
‘8
‘e
‘9
‘9
‘0
‘e
‘0
‘9
‘a
‘0
‘0
‘9
L
‘9
‘0
AN

18-NNf-¥

©
ANMTVONDO

XA

Q
=

yd:aof

00T ‘T/a14NI x
x

PR OPT IR U og v PP

i

o
1)

gy

T¢<1819
1IN0 : d13H ¢ ANUUKNOD

MIIAZY 0L A931LALS ON <<« fadog ¢«

AD31641S MIIAIY < L1 S IO
1IN0 : d13H ! ANUWWOD

QIIYILINI ION SISATWNY <<« fiduog ¢((

SISATUNY MIIA3Y ¢ 1 S I 9
110D ¢ d13H ! ANUWWOD

Us/N °°°°°°°° AUASIA HA0dW3L

g34IN03y ~°°°°°°°° AUASIA WILYdS
snie3}g s)yse] Buissasoudysoy

d331N03¥ °°°° NOILYINdWOD NOILNT0S
a3yINd3d “°°°°° A931HyLS NOILNI0S

G3AIND3Y °“°°°°°° .dNL3S. SISATUNY
snjelg syse) sisfijeuy

d31uddn °°°°° SNOILIANOD Adudnnod
q3iyadn """ """ ° NOILUd3N39 Quo1

d319ddn °°°°°°°° NOILYY3NIO T3A0W
snjeig syse)] buyssasoudauy

[319d 1] SN1Yl1Ls dgo0fr O

g0r M3IA3Y < 1 S I 9
1100 : d73H : ANEWN0D

i - —erep— S e - T : [e m et '

TdN1IS <C 1S 19
1100 : d13H : QHYLIKOD

“(9S) lenuey s, Jas SOYIS YT (2) 4O “°2333 JIUUNACGDILYLS 4TV3H (1)
1{nsuod ‘saritjiqeded sicfijeue g9ylg uo uoricwaojul [eualIippe JO4

*ABajeuys juaaund s, yshjeue ayy Burhojduwa ‘IeAnJa3uUl UOIIN]OS yoea
1RI3Iul 03 pasn st puewwod JINdLO) ayy ‘Arieury -uoriedrjipou
AN1323[3S puw MITAIJ juanbasqns Joy arqefreae S| 23uUay pue aseqerep
Y3 Uy pantyoue fiarerpawwr sy voryturgap Abajeuys ayy - (sayosyyms
Buissaosoud-viep 4) suoajawesed srwyirtsobre burpuodsauuos pue adhy
sysfijeue ue j0 swuay ur [enudjur uotinjos buywooyjruoy e aqraosaud
03 Pasn 3q uayy fiew spucwwods fibajeurs ay) -aseyd syshjeue ayy o3
aseyd buyssasoud-aud 3y3 wouy uoritsuedy Iyl e pasinbas st 4ni3s

uotIn(os Joy sazhifeuy 1°uN10NUIG §9YIG Y3 SIfoauy Cceceee 31NdiH0D
sisfijeue uoryvuqin goyig 4oy Abayeuays sasedaug °°°°° NOILUNAIA
sishjeue buj(xonq goyjg u03 Abajeuys sagedauyg - 9uIBIONG
sisfijeue oyweoufip goujs Jo) Fbajyeuys saJdedauag "ccccc° OHINUNAG
sisfifeue d13v3s Gg9yi5 404 RGajeuys sasedasg ---*°"°° HI1UIS
Jazfijeuy-aug (RINIdNIIS S9YLS Yl Sajoaul ccctctcctc uni13s

:4adoud sysfijeue yy1m pajeydsosse aue spuewwos Buimojjoy ayg

SISATYNY
<1S19>
SISATUNB d1IH C L1 S 1 9
1IN0 : d713H @ GNYNL0D

§J35 @9s91a°0 °77 3WIL NOILYZINOLOUY 1S3

06923 """ SNOLY¥3dO SNILUO4 1S3
ESBY "°7°°7° S3ISSINAAILS 04IZHOH
61 TTTTTTT HLAIKAHUE-ATUH C9AY
ve seseecesittt GHOTLINNGS

SOIISIIYULIS THNOILYINGWOD © (-
20-3699€°@ °""°"°°° 1H9I3M SSOYO

28-3699€E°Q "°°°°°""°" 1H9I3M L3N
JIISYTI °°°°°°"° NOILNLILSNOD
YINITNON ~°*°°°°°°° SIIIYWIHIN
m” ® ® o0 9% o eosacn mhzuzudu

Gz seeeeeeeeest Y C300N

“NOILUSNOTIINOD THY3INID o
T LINN WHNION¥IS A YU UWUNS SISATUNU-334d O

TTTTTTT SNOTLYDIN¥EYd (M3IHS) a-2
TTTTTTTT GNOILYIINEUd (MU3d) a-1
® ® SO S 00 S0P es v eBsesa e mdchzuhcz
................... m__uhm>m acod
TTTTTTTTTeTTect GLINM WANLONMLS

-t vt ot) et

AdYHUNS T3q0H O

M3/ 31Yd :gor

0°1J/5541S [¥3ZAWNY-3ud WANLONALS) 1S9U1S «»N

9
A

B

e

e

TA9IYNIS MIIAF C 1 ST 9
1IN0 : d713H @ ANULWO0D

2°=3715d31S S°“T-=WAYIINI < DIIYIS 1S I 9
[suotido 3 NOLM3IN 3ZISdILS WAYIINI :spuomfiay

JI11H1S ¢ 1S 1 9
1IN0 : d13H | GNUKWKWOD

U7N °°°°°°°° AUIJSIA THa0dW3L
aI¥ING3Y “°°°°°° " AYNdSIA WILYdS
snjejg s)yse] bBuissasoudysoy

a3yIND3y """ ° NOILYLINdWOD NOILNTO0S
d3yINd3y °"°°°°° A931YYLS NOILNT0S

——— = ———— e~ ————

SJ3S 089G6910°0

AQU3Y " °°°°° LdNL3S. SISATUNY
snjejg syse] sisfhijeuy

AQY3Y °°°°° SNOILIANOD AduUaHNOd
AQU3Y "7 °°° NOILUY¥3N3I9 (QuoN

AQU3Y °°°°°°°° NOILYY3NI9 13Q0W
snjejg syse] buissasoudauy

L 3147d] SNiLv1LSsS dao0or <O

80f M3IA3¥ C 1 S IO
1IN0 : d713H ¢ dNUWKO0D

"SISATUNY 3804 AQU3IY (>

°T° 3WI1 NOILYZI¥OLIOY4 1S3

il

“T33PNdU0) < 1 S I 9
1IN : 47134 @ aLUUU0D

WIXIN, TctTottocececccccecccccs 1NYIS
0 ‘O ‘@ ‘T ‘T ccrtettettctt (INNY4°SA) 3AYS

Q n@ n@ us s@ » e e n e s e e asaan AI*AU\m\mnav ;—rmﬁad
20-3AABL @ tteeetereetetesere ayIvuy

@ eeerreeeseseeseeeeses Jnovbg

. N0 sreessesessntennsnr dHNI3

T 7 4G314IQ0N. """ """ =" °"""="°°° NOIM3H
80+30382°@ “-°°°°"-""°°-° (ewdoul) 3ZISd431S

00+3000S°0 ‘80+3E20T°@ °-°°°°° (xewed‘utwed) YANILINI

YYIHIINON ~ JILULS tA93149d1S O

h 1081S A4 < 1 S 19
1IND : d713H | ANUNWO0D

T‘QOW=NOLM3N JIIUIS ¢ L S I 9O
1IN0 : 4734 ¢ dHUUWOD

I.—.xu—hl eevescsvescessnesvesacss hmc.—vm
2 ‘e ‘@ ‘v ‘1 Tttt INNACSIQ) 3AYUS
a \s \& \Q \Q e s 0 s s s s 200 Ak\“!“.“lnv .Pm“l—
N&lucacﬁls IR R I IR SN B S) mzuxc:

a eae s e v escssncscesnssose s hsuxcz

._“OI ® @ & 0 ® 8 04 6 6 0 s 0 aG s T oo mcmhxu
ax Q3HI4IANN 2 "ot eTeee Tttt NOAM3N

©0+30082°0 "ttt cctccc (wdoup) 371SdILS
80+3000S°8 ‘00+35531°@ " °TCcc (xewedutued) JYAYILNI

YINITHON ~ DJI1UIS tA9318YLS O

h—

{ 80+38022°0- 8d ‘pp+30001°0= Yd 1 O d315 SNIAIHON¥Y ©

11693N 40 d3EWNN

-@3131dHOD NOIL1I1S0dW0I30 XIdLUH
81 « H1QIN QUuUd 39Ud3AY *SHOI1UNO3 vS
8 = S1003 3A

‘@22 *»"DIXIN+3IBLBLSBE’D =XIYLUW SS3HIIILS 40 INUNING3L3a

*@3137d40D X1¥IUKW 6S3IN4311S Wiol 40 A8KW3SSY
(N3) LINN ¥03 031NAW0D SIDTULLH SSINASILS IN3WITI

38UHd NOTILNTO s O

0 14315 WOY4 1¥YisS ©
00+30002°0 ‘09+30005°0 ‘0p+300081°0 :(Yd) TWAUIINI o
3I5HO4SIY DT1ULS VUINITNON ISISATWNY ©

3ISUHLd 1NdNI 197

8°12/5944S

31y1d :860f

[¥3IZABHY WHNEOMSLS] 2594185 «»

"-llr."\nl»l.l‘“'""Il’”tl‘ll‘"‘ll-"nl'\r‘ -

e il 3

Y 5 i X . T R VO) . re

-V;‘T"'V W FTy
.
x.
HE
54

v i
E,_‘ : * atit
!
! : L
L sl
: il
| nln'
;]
i~ e
z
é, ::::::: . R B8] ’
4 .
1
it
il
{ il
. posony u:iﬁ: oy
] fis i i
: rinf . inig}
* -'::..
" = e
» ! i "
= o i =T
. i | E
+ " ol m" .m:ll ::gn
.E‘g;g } :m? " Voutth st E:- gig::-l ﬁiﬁ'
it oo bt e t
v!i}f'] !|'§-|! L"“ st Gy [ol ,,..." s fubyl
= g e i i b b
\ weh S e £ g sl i -
) it i - THIH ! . : i [_'f_'t"_'] utn
& " 10 il e sapte fHet] L el i
. e B g BE g B i G e D
I HE’ da oo tafi e T e ot
s ol E!h.:i ml'" ;::;;;! !;;5'5! g
It v, " . Hertd
r l??ﬁ A b i d G el N iy Fﬁ i
e (ot B bttt B EE
: Gl B - i il oy
; will B B b Sl Ly ey B e wp
bl E&.ﬂ ﬁl::" Eg;-;l = L e ,I-'-' find
o Gl g P E— e B '
S e it] gt il o byt i
y b Sljie e d P N R I) "l!! l‘lll“]
I = ' e agiss > * ak e J el
Uil inte . o Rt o"“‘ |‘|
: B o T
- el - fll bl iy
-

'Y

-
=1
n
ity
..... :
]|

A
¢ i il
g ot
} bt it
rulh bt
g it bk
s wei st
ln]ul
ity
hu i
»

-4-3:' piih

B i ol
TaR3nar xx
gx’t‘:&t 2

| EE

A

3
£33

S

G mm g i
4 * Eg_" “l [.:3

.!") r. (1
. | "' 3
!ﬂ 4 g!!!.,|

i

it ST

[

st
‘l.‘,N
.

anfes

i

el

-:".:l'

I:

i iy

e

"“ill
dlily
sy
il
Lt

wdere

i

i

hudul

sossesi

i e

ity

vt
i

I}
ol!'!
"

wiiiih

poll’

i

s

i

WY T R T T T e
s B
. "
[

]
-

'.

g .
br

o !

>

A

b

i

e o Tabten dath ik wrt

?5

e

i iyl

i i

iy [t

i R

[T} Sspmosh

dh

i

O

jﬂ'

1
g

(9
' Broeas ﬂ
Y T e
: B EE
4 l;f;':j :lll!”
‘ A E.;,.
. [aind

W

[e}
il

i

sty
Uteeee
i
E- i
bt

it

i
'g!:!gi it .m:'
i !r:u!E
it e b
ik
“bdes

[T

ST e A WA s Ay 3, W B i PG s S

e e

T

e

e
[2] 2004

Heovsnd

ey

atifl
b, '
bt
.

i

l!!!lll

u::u..l
!!: i I

i~

1M
h::ll- Halls

o

e e R IEERSS TR SNSRIV

TE‘B=NOILNT0S 1NSTH < 1 S I 9
1I00 ¢ 47134 @ GHGLHO0D

(2114 (PUJaIN] S9YLS) HIS 3ib1d :2 314

FHEHH PR R R F 4 4 1 4 4 4 4 4 H 4 44
+ $40123s @8 satdnioo pue s313s ejep GY sey faeuqrq +
FHHH AP R R 1 1 1 4 b H A R 44 4
E 8 Jy1S 9YIS 0 a2 (3 6vS @ vO2ece 18sP99 62 ST
£ 0 dSId 9Yi1S 8 02 l 821 @ 202€EZ 18GA%A 9.2 14!
A a 341S 9Y1S 06 a2 £ 6vS 0 OVTEEZ 186990 99 ET
4 9 dSIgd 9Yi1S @ a2 l 821 @ LETEEZ 18S@90 €9 21
1 0 JH1S 94IS @ fe £ 6vS 0 PITEEZ T18SO90 €S 11
1 %} dSId 94i1S 0 02 B4 821 0 ETTEEZ 18SOB90 BS a1
(%) (%] 1S 9U1s @ az 13 6vS @ OEOEEZ 185090 OV 6
2} (2] dSId 95u1s o B2 2 B21 P 62BEEZ2 185090 .E 8
) %] YdlS 9YIS B 86 3 86 ~ @ SOBEEZ 18S09G SE 2
] | ¢ S30d 9Y1S O 4] 2 [¥ 0 GB22E2 18GN90 TE 9
%) 1 auo 9yis @ a1 2 811 0 S3.2€2 185053 82 S
8 1 3dNOD 9Y1S 0 a2 € y68 8 Sbl2E2 195898 €T 14
(*] 2 dq44 95Yi1S 6 a1 Zc 174 @ S0.2E2 186098 11 €
9 e T1UN 9Y1S 0 at A a2 @ SB.2E2 185098 6 2
(7] e 1Y1S 94i1S 0 as 6 ars 8 2S82E£2 185890 8 T
pweN gwey 2wey juwey dfi| az1g sday spuopy 4 swr) J1eq SIIPPY ¢

Jweu 135 wie(3 d5y9ua basg
FHEHEH 441444444 1 A A R 1 H H HHE H H H H H H H b H 4 4
+ 91S°31Yd 2114 ‘91 Raeuqin ‘SiNILNOD 40 I1aYL +

FHEH T4 4 1 P 1 4 4 4 T 44 4 b 41 44

3SYaVLYAd SISATUNY O

NYU J01/M3IA3Y < 1S 19
1INd : d13H : QUUNNOD

107d 7113H373 =
T 3SUYD 9HIaY0

31v7d c4of

- -
- —— o > a0 o - —

€0°G/S1419 { AYIdSIA NOILINT0S) 177NSsS 3y «K»

—— > —— o —————— — — —_—— —— - e —

AUdSId 804 AQY3H O
21 ‘350D +4++

€E O ISSOYIS <==> P J3AUNN NOILNTO0S SLAIO <>
€ ©@ dSIASOYLS <(==)> ¥ YIAUNH NOILINTO0S S14I9 (O
2 0 ISSIYIS (==> E HIANNN NOILAT0S SLIIS <)
2 @ dSIOSOYLS <(==> € Y3aUNN NOILINTI0S S14I9 <>
S 8 3YISSOUIS (==> 2 Y3CHNN NOILMIOS S14I9 <>
T 8 dSIASOYLS <(==> 2 y3aHUNH NOILNTOS S14I9 ¢
8 @ 3JISSOYIS (==> T Y¥3EUNN NOILNTOS S14I9 <)
8 0 dS1aS9YLS (==> T ¥3GUNN NOILNT0S S1419 <>
%) ‘€ ‘e = Sd31S 1dYay <280822‘€0801°eoN <1
<9258

31Y1d< 188002 ‘28081°0N <>

‘gof

‘gor

70" 171819 ¢ d01cHAY S14I9(-SoY1S > 925 <K«»

€°9-N0IINT0S L1NSIY < L S I 9
1IN0 | S7Z ¢ CRULINOD

—00+32800°0 ——
00+3000°0 Z
—00+3008°S——
08+3000°0 A
—18+3000° 1 ——
00+3600°8 X
T SLINIT10d™

——982+3000° 1

“1S1d ONIM3IA
T92T 24— v9
$°YId M3IA

ZH1
¥ 39ud

S143a 13a0u

x

00+3880°0 61-3162°b- 61-3LTE b- 208-316B°1- 0B+3308°0 00+3880°8 12

AHL xH1 1 A n dN
BTy €2 T 3SYD 9HIGHOT 18-NNL-S u»cJQ"mo$
/52700 3H1
44035Ud »
T 3SUD 9NIQUO)

1

o AR LT

—C\C;—

1IN0 =

%

p *

02-389E°T 61-3Iv92°2- 61-3262°p- 20-3I1pS°9- 12-386E°2 T12-362S°T1 12
ZHL AHL XH1 M A n dN
T 394d VE:9V:EZ2 ¥ 354D 9NIAUON 18-HNL-S 3lud:dof
/712/NA3NT =

x
¥ 3SYI ONIavOo
vy/3590a7 x
x
%X
82-3201°T1- 02-3VEB 2- 02-3226°T 208-39p9°p- 12-3096°9- 12-318V°E 12
ZH1 AHL XH1 M A n dN
T 39ud 21:9p:€2 € 3SYJ 9NIQYO 18-NAL-S Jlvd:=gaor

/T2/NAANT *
x
€ 354D 9NIGYOT
€/3542a7 =
b 3
X
12-31€8°E 61-38v2°1- 61-39SE°T 20-30EB°I- 22-3v28°2- 22-3IBE6'2 12
ZHL AHL XH1 M A n dN
T 39Yd 90:9p:€2 2 354 9uIGYo? 18-NNL-S 31Yd:dof

712/7NA4NT *
x
2 3SY) SNIQUoT

273542401 =
%

3

Q9 -

[suo

¥

00+3000S°@ ‘00+30001°0

R R e e T

G =321Sd31S "T‘S =TWAYIINI DILYIS ¢ LS I 9
1100 : 4134 : GNUUHOD
é1oym = JUANIINI < @iRq PIIRAUT (K

G =3ZISd31S 1°°S =WAN3INI ¢ JIlyls 1S I 9

11dp 1 MOIM3N 32ISd31S WAY3INI :spaomfiay
JI1UIS ¢ L S IO
1IN0 : d13H @ GNUWWOD
WIX3N, CCTortetottotottctcccct NULS
‘g ‘T Tttt (DIMNAS@) 3AYS
s@ Qs QQ s s s e 00 eetsee Au.ubmhmtnw .—vmﬁl—
9B-I0OBT @ Ccteeetreeereteteretert NNIXUM
& l.ll...f....l.!.lll..'lll quxcz
3:0- Il'll'l..ll'llll‘.'..l. &cmhxw
\ .-Q“HI*HQOZQ- .l...l.l.'llll.....l... ZOh.zuz
B0+30002°0 °°°cccccccccc (wdoul) 3I21Sd3LS

cescess (xowed‘uywed) TYANIINI

JYINIINON 7 JI1U1S tA931Y¥381S O
1U81S M3IAM C 1 S 19O
1IN0 : dT3H ! QNUWKOD

vS **°** SND3 40 Y3BUNN

22+30068°0 ‘08+308085°6 :(8d°Yd) SYOLIYS GUOT
€ **°*** d31S NOILNOS

YHINITMON ~ DIIYLS °°°°°°°°°""° H3IN80Yd

{ 31vd 1

SNLIYLS SISATUNY O

SISATUNY MIIAFY ¢ L S 1 9

A,

—ag -

€ *d31S HO¥4 13YL1S ©
00+3000S°0 ‘10+30001°0 ‘98+300BS°0 :(Ud) TUAN3INI ©
JSHOAS3Y JILULS HU3SNITNON *SISATTUNY ©

" 3SYHId 1NdNI O

3lud :H0f

8°1J/59U1S

[¥3ZATUNY BaNLONALS] 2S92U1S «»

3INdWOd ¢ 1 S I
1IN0 : Jd713H ¢ GHUWIO0D

«IX3H, "tcccttttoseccsccccccsce 1NUIS

9 ‘8 ‘O ‘T ‘T cetteetttttt (INM4°SA) 3AWS

2 ‘9 ‘D ‘B ‘@ "ccctcttrtcttt (4°3°WS‘@) 1SIN
20-30001°@ Tttt etccteosceccc MNIXUU

@ Ctctstttssssscsesecccocc INDXUU

1) PO P - T b & |

T 7 LA3I4IQOW. " °°ccc*°°cccccccc°=c*c HOLIM3N
09+306380S°0 "ttt ccccc°° (wdouy) 3IZI1Sd3LS

104308010 ‘00+3009S°0 *°°°°°° (xewed‘urwed) WYANIINI

HY3NITNON ~ JI1ULS tA931UYd1S O

A931UdlS M3IA3Y C 1 S 19
1100 Jd13H ! aNBU)I0D

W

[]

:}«
LN 144
o

beateed
[0
L
e

[

wnn
(]
[
fososse
wnh
wwssal
[+
e

]
oot

feneng

i

wi
11

m

ni:in‘:
[l

ed
mae

bt
it

tw“
u‘.‘u
e

Yesocot

2l

qesersy

(R

Bsensf

{1
]|
Wik

i
wed

e
[!
|=IIR|
R

]
tih

n
]
é.:.!.!l

ittt

L e

-

. - o —
-
i
L 4
wih
~r‘-,5‘ - ligh
g = fi
i g '
W W, =
'c‘.:'ﬂ' Wosesd
. .
- g
J:Iii*
B E i
He i e BN e
w0 il gy
3 " * .“; 'il 8/
. B oo b i
- o i) o &
{ . ket g il F
pae g moc e
it) = gl
i3 E’m i
28] i bt 0l i
it nn
» n{!u ‘:;'l! I”!:" "". l;si!‘ |:’E;
. e Ul o il
A frmes il) B
[i T8 foeor
| :;:':'] .::;ﬁ; l::‘!' s
) ,‘L‘L eecsss >
drhd i

4 ZANR ISR Tl ta b i

‘ [V F‘
4
o

i

izz
HEH

—r
E!!gé ui‘.in
::u' i
|!!'! !. . [
Sil ,
. apd L by g=iv|‘=i -
. iz o Il l.f‘ﬁl i : !
) 5 H N 'w:u “=
k2 4 [t' A P -l kim M " Wi
"] " " *" ":1 SEJ!” wih o] E!Q Ju! f
LTI T T TR B TR R e o o =
o ,ﬁ s i
! o s B E
¢ e B Y I o TR U W (N R L TN U "J“' ‘!Illtl i
il e P
et i &

78°1/1S19

14
1 4
0

TAU4SIA 404 AQUIN <)
2T ‘350D +++

JYISSOLS (==> T YIGUNN NOILNTOS SL14I9 <)
dSIGSOVLS (==) T ¥3IAWOAN NOILNTIOS S14I9 <)
‘D ‘v = Sd31S 1dYaqy <20080D ‘€E8eB1‘eeN <1D)
<92S

319144188002 ‘2080081°B8N <T1I)>

*gor

‘gor

< ¥01d4YQY S1419¢(-SWIS > 928 «»

P=NOIINT0S 1TNSIH C 1 S I 9
1IN0 @ dI3H @ QHUKNOD

1 3944

a2-3rie"2
ZH1
T 39ud

a1:090:00

02-31T1°€E- BI-30EE"T
10:65°E2

20+3019°2
c0+3E9¥ "9~
2B+3E9V°9
20+3019°2-
20+3019°2-
20+3E9Y "9
2B8+3E9p "9~
20+3819°2

31AdIN -- S3553A1S
3592 9NIQY0T

20-3v8S "6~
M -

354D SHIaYoT

€0+38PS°E
€8+349E°6
€0+389€°6
€6+38VS°E
EB+30VS°E
€0+349€E°6
€0+309€°6
E0+30VS°E

18-NN[-9
02-3186°E

A
18-NNf-S

107d 7dN01HOD =

€0+3S18°F 21
€0+43€21°b 1TV
€8+3€21°y 01
€8+3G18°y 6
€8+3S18°v 8
EQ+3E2TP 2
€0+3E2T°y 9
€0+3G18°Yy S
3N
Jlvd:g0fr
721°G/1S4NI x
*
92-3228°2 12
n dN
31Yd:dofr
712/NGINT *
) 3
T _3SYD SNIAYO1

3ivd :dor

€0°S/S1419

[AY1dSIA NOILINTI0S)

1710S 38 <«

{(—eo+3200°0 —
e9+380006°0 2Z
—00+3000°G——
0B+3600°0 A
—10+3200° 1—
00+3000°0 X
TSLINIT10d™
———82+3608° 1
“1SIA SNIM3IA
T92 24-— ¥9
FTIa M3IA

10+3008°6
10+300S°8
10+3000°8
10+3808°2
1943005 °9
18+3000°9
104300S°S
184+3008°S
18+380Ss v
1a+3000°v
18+3008S €
1804300852

CLQAWLOI-mHIEZ

SUNOLNOD SSIAULS

$1430

v 354)

ONIQu0

\l

J3a0M

107d x

dNO1NOD =

1353y

PRy . om .

09+3800°0 Z
—80+3080 " G——
00+3000°6 A

—18+3000° 1—
00+3000°6 X
T SL1IUIT10d™

————92+3080° 1]
*1SI0 ONIMIIA
%%) 5 a
: Y¥Id M3IA

—08+36080°0 ——]

10+3008 "6
18+330Ss°8
19+3000°8
10+3088°L
19+300S°9
10+3800°9
10+300S°S
10+3000°S
19+380S°v
10+3800°y
194380S°€
18+3806°2

CUAQAWLOI - JEZ

SANOINOD SSIMLS

e

S143a

NWIXNCTIHO I3 08y

T 354D 9HIauo1

iy e ...‘(a..nmnﬁtq..ihib PIE, 37 s e - —
- .- " ., ~ . ‘

[ERE v ——" - - - " " v —

T PN

88+3820°0

80+3000°@8 2
ae+3e08°S S$743d
88+3080°0 A
10+3060° 1

00+3000°0 X
S1IUIT 107

02+3608°1

*1S1d ONIM3IA

80T 9 @ :
: §1d M3IA

N

re+3880 "y
p@+3008°E
v@8+3009°€
v8+308062 €

\\/\:ffz//

H™ L L~ A~ T~ NN TNOIN NI H

$0+3000°€E
vya8+3008°2
v0+3009°2
vo+300v°2
¥0+3002°2
¥0+30008°2
y0+3C08°1
y0+300v°1

COQULOI =M UEZ

SY¥NOLNOD SS3YULS T 3542 O9NIGYO

107d-/H01108 =

U e - e

. @0+3000°0 |
00+3008°8 2 A
00+3000°S 51430
00+3000°8 A
10+3000°1

00+3088°0 X

S1IMIT 107d

- 92+3000°7 N U 1 X £ I H

*1SIA ONIM3IA . A///Anxﬁuuummuwwv\\\
8T © @

I M3IA

~

i

v@+3089°€E
pa+308Y°E
p0+3882°E
p@+3008°2
v@8+3009°2
PO+300v "2
¥0+3002°2
¥0+30068°2
v@+3008°1
?0+3009°1
ro+308v "1
P0+3000°%

(=)

COALWMLIOI-mIEZ

70001 ‘1715311 »

SdNOLINOD SS3Y1S T 3SHI) 9HIQUOT

T 39%ud

T 394d

T 39ud

Bi:1t1:00

SS:01:00

or:e1:00

|

EO+3BEE"T

d0l -- S3SS53u1S
354D ONIAYON

EOQ+3BEE"T-

dol -- S3SS3IS
3SYD 9NIAYO0T

£8+3590°2
20+3v6y -8
c8+3r6p 8-
EB+358Y "2~
€a+38vSy
184365S°p
10+36SS b~
€0+30PS° V-
E0+30PS P~
10+36SS "V~
10+36SS°Y
£E0+30pS°Y
EG+3S9P "2~
28+3vev 8-~
2o+3vrer -8
€0+359p "2

HoL108 -- S355344S

|

3SYD ONIQUOT

v8+3012°€E
18-HNf-9

va+3012°€E
18-NNf-9

yO+391E°1
PO+3VST°E
va+3rST°E
va+391E° ¢
€0+3269°S-
vO+38€EE " T~
ve+3BEE" 1~
€0+3269°G6-
€E0+3269°S-
p@+38EE " T-
v0+38EE " T-
€0+3269°G6-
vO+391E°T
PO+3VST°E
PO+3VST°E
vO+391E° Y

18-HNnf-9

%
ro+396E°1 2L
3H
31vd:aofr
7271S3NT *
%

% % %

ya+396€°1T 9
3N
31yd-80r
79/74S3NT sd01 x
x
EB+3EBS"S 9T
Ea+38ev°8 SI
EQ+3BEY°B V1
€0+3€8S°S E1
€e+3.C8°S 21
EQ+3212°6~ 11
€0+3212°G- 01
€0+3250°S
€0+3260°S
€0+43212°S~
€0+321L°G~
€0+32€0°S
EB+3EBS°S
EQ+38EV "8
t6+38EV°8
E0+3€E8S°S

“(NMITVLONDOON

3N
3yd:aor
/B00T ‘T/1S4NI *

T 39%4d P2 ET:00 |

1071d 7881T/NA379IS/S1IN3INITI/1353Y *

€E0+39E2 " 9-
28+3585°9-
2B+3S8S°9
EB+39€E2°9
E0+3210°p-
E0+36EE " T~
EQ+3BEE"T
€a+3218°0
€E0+3218°p
EO+3BEE"T
EO+38EE"° T~
E0+3210° v~
£0+39€2°9
20+3685°9
20+358S°9-
E0+39€EZ2°9~-

dol -- S3SS3YLS
3542 9NIAYO

€8+3150°8-
yO+36TT°1-
po+361T1°"1-
€0+3190°8-
va+3222°1
y0+3212°€
va+3012°E
ve+32.2°1
ra+3222°1
v8+3812°E
pa+3012°¢
pO+3L22°1
£0+3190 8-
vo+3611°1-
ra+3611° 1~
€6+3150°8-

18-NN[-9

x

EB+ILETE- 91
g€8+3820°2- GI
ga+3gzcace- vi
EO+32ET°E- ET
E0+3ELSY 21
vo+396E°T 11
va+396E°1 01
EB+3ELS°P- 6
E0+3ELS°Y 8
pa+396E°T 2
va+396€°1 9
EB+3ELS°Y S
EQ+32ETE- ¥
€6+3820°2- €
€e+3820°2- 2
EB+ILETE- T
3N
jivd:aor

/8081 ‘1/1S4N] x

LK B B B B R BE BE B 3K M

© e e ———— e s

—00+3000°6 ———
68+3000°8 2
—80+3000 "' S———
60+3000°06 A
—18+3060° " 1——
00+3000°0 X
— SLINITT10d™

——82+30608° 1
“1SI1d ONIM3IA
aat (%) %)
$°3Id _M3IA

S$143a

13004

L

107d/786-/A108 =
S1H3N3IN3
13534 x
3S4Y2 9NIAUO

il

—00+3000°0 ———
80+3000°8 2
—068+3088°S——
00+43088°86 A
—10+3808° 1—
60+3683°0 X
T SIINIT107d™

——82+3008° 1
“1SIA SNIM3IA
e eer-— @
$TUId M3IA

S143a

J3a0H

1

3SYI ONIAYOT

1IN0 =

g g > . p— oy " "
i TR TGS st vt g . .

“gof 331D C 1S 19
1IN0 : d13H : ANULOD

OHISSID0NdIS0d : S1J4I19 ¢ d1S°31yd HE A §
ONISS3II0NdLISOd : S14I9 ¢ SNA“31Yd P ET
SISATUNY : S9U1S ¢ NIS 31Yd Tt 2t
SISATUNY @ S9YiS ¢ 91S°31Y1d I & ¢
ONISS3ID0¥d-34d ¢ S1419 ¢ Sa1°3ivd HE % ¢
‘ ONISS3ID0Ud-Fud : S1419 ¢ a3-3ivd I Y
: ONISS3D0ud-3dd : S1419 @ 1713°319d v 8
IOHISS3I0UL-38d : SLII9 ¢ S1d"31Yd P A
OHISSID0Yd-34d : SidI9 ¢ SH1"31ud 9
ONISSII0Ud-I4d : SL4I9 ¢ 1UH°31Yd HE
ONISS300dd-3d @ S1419 ¢ NIT“31Yd I 4
OHISSII0Ud-Iud : Si14I9° da9°"3181d t E
_ ONISS330dd-34d : S13I9 I14°318d HE-
_» ONISS3J08d-384d : S1419 dud " 3191d HE ¢
abesn . adfiy awey T A1y

1 svaviva go0or O

g0f JOL/M3IAIY C L1 S 19
1IN0 ! d13H ¢ GNUYUWOD

3

papuadsng 3)y1d qof <>

1IND ¢ 1 S IO
1IN0 ¢ d13H : QHBUWO0D

==~ AldU3 --
3svagviva dgo0or <

g0f J0L/M3IA3¥ < 1 S I 9
1IN0 ¢ JdT13H : ANYUKROD

THE GIST TUTORTIAL

PART 3:

ARCHITECTURE; GIST SOFTWARE

W \ o -t . -‘m e ‘4 =i P

GIST Tutorial / Part 3 PAGE 2
GIST Software Architecture

3.0 INTRODUCTION :

In this Part of the tutorial, we focus on the actual software
comprising the GIST system, and in particular on the architectural
components which cement the basic building blocks into an integrated
whole. The enclosed material is therefore not intended for the

- "pure™ user, i.e,, the analyst, but rather for the developer. By

* developer, we refer to anyone interested in either continuing or
maintaining the development of the GIST system, or even in building
other systems which have similar architectural requirements.

A schematic of the software system is illustrated on the following
3 page. Three basic software "families" can be identified: GIFTS
. (pre/post-processing software), STAGS (structural analysis
] software), and GIST (architectural software). Each family consists
of a number of "processors”, i.e., independently executable program
modules. Furthermore, the processors within each software family
communicate with each other by means of a "database", i.e., a formal
collection of named data-sets which are saved, or archived, on
permanent disk storage. Notice that the GIST architectural
components have access to both the GIFTS and the STAGS databases.
! It is the database system that makes the concept of "a network of
integrated processors™ work in practice. The architectural
v components simply exploit this convenient mechanism, guiding the
e flow of data both from database to database and between the database
: and the user, as necessary for compatible and coordinated
operations,

In the following sections, each software family will be examined
with respect to both processor function and database interaction.
Since documentation on GIFTS and STAGS is available elsewhere (e.g.,
[G3]1] and [S4]), the most substantial sections will be on the GIST
architectural components: the GIFTS~>STAGS Adaptor (Section 3.3),
the STAGS->GIFTS Adaptor (Section 3.4) and the GIST Control Module
(Section 3.5). 1Included in these latter sections are full source
code listings (in FORTRAN 77), which, with a few isolated exceptions
are essentially machine independent. These listings may serve as a
sample for constructing arbitrary interfaces to GIFTS (as a
pre-/post- processing system) , and also for developing

N command-driven processors based on the NICE architectural utility
library [N11].

GIST Tutorial / Part 3 PAGE 3
GIST Software Architecture

ARCHITECTURAL VIEW OF THE GIST SYSTEM

e R s e

) -3

COMTRO . (GXSTH) M © O E

k.. Pre- Processing PAnat\ysis Postprocessing
X |onees e\ors svoes

. auukn| | Eortem Pre Arles

1 G\ E<S

- | RESUCT

- G\ETS SETS SHt:.s

¥ Bunxig| | =D An aly-2er

Datavase

O arabasc E Datavase

NOTES:
o Shaded regions represent databases (///=>GIFTS; \\\=>STAGS).

o Non-shaded regions represent software processors.

o Processors have access only to the database (or databases) with
which they come in contact in the drawing.

GIST Tutorial / Part 3 PAGE 4
GIST Software Architecture

3.1 GIFTS SOFTWARE ARCHITECTURE

This section will, for the time being, constitute nothing more than
a pointer to the 1literature. The reader interested in the
underlying organization of the GIFTS software family is referred to
the GIFTS Systems Manual (G3]. Also included therein is a detailed
discription of the GIFTS database (or Unified DataBase) and the
corresponding software utilities (i.e., subroutines) available for
accessing it.

GIST Tutorial / Part 3 PAGE 5
GIST Software Architecture

3.2 STAGS SOFTWARE ARCHITECTURE

Due to present plans to perform a massive re-structuring of STAGS
software into a system more aligned with the NICE concept of
engineering analysis softare-architecture [N1l], it is not considered
worthwhile, at this time, to go into any detail on the present
"gtate of the architecture”. However, at the soonest possible
opportunity, a detailed description of the newly implemented DAL
database [N2], which was introduced in Part 2 (Section 2.4), will
appear in this very section ...

GIST Tutorial / Part 3 PAGE 6
GIST Software Architecture

3.3 THE GIFTS->STAGS (PRE~-PROCESSING) ADAPTOR: G2S

The G2S processor is the GIST architectural component which

constitutes the "pre-processing interface" between GIFTS and STAGS.

The term "Adaptor" implies that it renders something suitable for a

n use other than was originally intended. In fact, G2S "adapts" the

; v GIFTS database definition of a finite element model for wutilization

: in STAGS analysis. The result of this adaptation is a STAGS1

- (pre-analyzer) "card-image™ input file, precisely in the format

¥ specified in the STAGS User's Manual [S1], with the exception of
- . some modifications noted in Appendix B of this tutorial.

The function of G2S may therefore be concisely represented by the
following diagram:

User Input
(commands)

i
GIFTS Database =-=--- > | G2Ss | =———- > STAGS1 "Card" Input
i

User Output
(summary)

The internal structure, or architecture, of the G2S module, i.e.,
the way it breaks down its primary function into tasks, is
summarized in the following list of basic subroutines:

G2SX ..¢.... Main Program ("Executive")
G2SI Initializes program operations
G2SU, User (command) interface routine
G2SMS Creates STAGS1 Model Summary data
G2SMR Creates STAGS1 Model Resources (matls/fabrications)
i G2SMC Creates STAGS1l Model Configuration (discrete geom.)
i ’ G2SML Creates STAGS1 Model Load and B,.C. data

‘ G2SESP Generates GIFTS "element stress pointers”

G2SF Finalizes program operations

A listing of the FORTRAN 77 source code for all of the above
routines 1is presented on the following pages (in alphabetical
- - order). Note that a number of GIFTS and STAGS utility subroutines
= (and COMMON blocks) are employed throughout the processor.
» Documentation on these routines may be found in [(G3] and ([NS],
respectively.,

GIST Tutorial / Part 3
Section 3.3: The G2S Adaptor / Subroutine G2SESP

C=DECK G2SESP
SUBROUTINE G2SESP (IEGIFT,NSTRP, IESTAG)
C
C=PURPOSE OUTPUT GIFTS ELEMENT STRESS POINTERS
C=AUTHOR G.M.STANLEY
C=VERSION NCV24/1980
C=EQUIPMENT INDEPENDENT

C
C DECLARATIONS
C
COMMON /ELT/ NEU,NES, ISTRKE, IELPLT,IT, IORD,IST, IAPL,NLDRC2,
1 NCP, NGP, NLFLG, NSTPT,NLAYR, ISTPTR, NMAT, NTHS,
2 FACT(5) ,ECCEN, ELTPAD(3) ,ALPHID,LCP(27)
o
C LOGIC
C
NSTPT = 1
NLAYR = 1
IF (IT .GT. 2) NLAYR = 2
ISTPTR = NSTRP
NSTRP = NSTRP + NSTPT* (NLAYR+1)
ISTRKE = IESTAG
CALL OUT ELT (IEGIFT)
Cc
RETURN
END

PAGE 7

GIST Tutorial / Part 3 PAGE 8 |
Section 3.3: The G2S Adaptor / Subroutine G2SF

C=DECK G2SF
SUBROUTINE G2SF
C
C=PURPOSE FINALIZE OPERATIONS FOR G2S5 MODULE
C=AUTHOR G.M. STANLEY
C=VERSION DEC05/1980 .

C=EQUIPMENT CDC VAX
C=KEYWORDS FINALIZE G2S

C

Cc COMMON
C

COMMON /STATUS/ ISTAT,ISLG2S,NG2S

C.... GIFTS
COMMON /CMDSLT/ 1SLIN, ISLOUT,ISLLST,ISLTTI,ISLTTO,ISLLPT
COMMON /JOB/ XJOB(2) ,LJOB\{5S)
COMMON /PAR/ LHV(13),LGL(5),LP(25),LS(16),LM(1]1)

C
C EQUIVALENCE
C
EQUIVALENCE (LS(1), ISTM), (LS(6), ISTLD), (LS(7), ISTBC)
C
C -DATA
c
DATA XG2S /4H G2S/
C
C LOGTIC
C
IF (ISTAT .LT. 0) GO TO 800
C
C.... RESET GIFTS MODEL STATUS PARAMETERS
ISTM =1
ISTLD = 1
ISTBC = 1

CALL OUT PAR

C.... CLOSE 'G2S' FILE
CALL CLOSEF (ISLG2S)

C.... PRINT CLOSING MESSAGE
IF (NG2S .LE. 0) WRITE (ISLOUT,2000)
IF (NG2S .GT. 0) WRITE (ISLOUT,2001) NG2S

C
RETURN

C

C.... ERROR EXIT: DELETE 'G2S' FILE

800 IF (ISLG2S .GT. 0) CALL DELETE (G2S)

STOP

C

C FORMATS

C

2000 FORMAT (/ 3H <> /)
2001 FORMAT (/32H <> READY FOR STAGS PRE-ANALYSIS
1 3H (,15,16H INPUT RECCRDS 1/)

(o
END

GIST Tutorial / Part 3

Section 3.3:

C=DECK G2S1I1

The G2S Adaptor / Subroutine G2SI1

SUBROUTINE G2SI1

v
C=PUROSE INITIALIZE OPERATIONS FOR G2S MODULE
C=AUTHOR G.M.STANLEY { JAN 1980]
C=VERSION 1.0
C=EQUIPMENT CDC VAX
c
C=UPDATED JAN30/1981
c
C COMMON
C
COMMON /JOB/ XJOB(2) ,LJOB(5)
COMMON /G2SVER/ G2SVER(2)
COMMON /STATUS/ ISTAT,ISLG2S,NG2S
COMMON /OPTION/ LISTOP
C
C...l GIFTS
COMMON /CMDSLT/ ISLIN,ISLOUT,ISLLST,ISLTTI,ISLTTO,ISLLPT
COMMON /DISKIO/ INUSER(10),INUSES(3),IFS,IFN
COMMON /PAR/ LHV(13),LGL(5),LP(25),LS(16),LM(11)
COMMON /PTS/ NU,NS,ISTRKT, ISTIPLT,VCSMC(9) ,WRKPAD(8),
1 LMN, INTP, NLDREC, NBL, NFR, MFP
COMMON /PTSBUF/ ISLPTS,LOCPTS,NBPTS,LPTSSZ(S),
1 IBPTS(102) ,FBPTS(170)
COMMON /ELTBUF/ ISLELT,LOCELT,NBELT,LELTSZ(5),
1 IBELT(252) ,FBELT (100)
COMMON /MATBUF/ ISLMAT,LOCMAT,NBMAT,LMATSZ(5),
1 IBMAT(27) ,FBMAT (55)
COMMON /THSBUF/ ISLTHS,LOCTHS,NBTHS,LTHSSZ(5),
1 IBTHS(32) ,FBTHS(75)
COMMON /LDSBUF/ ISLLDS,LOCLDS,NBLDS,LLDSSZ(5),
1 IBLDS(2) ,FBLDS(80)
COMMON /ELDBUF/ ISLELD,LOCELD,NBELD,LELDSZ(S),
1 IBELD(32) ,FBELD(160)
C
C.... STAGS
COMMON /STAGS/ NSTGM,NSTGF1,NSTGF2,NSTGN,NSTGE(4) ,NSTGL
c
C DIMENSION / TYPE
C
CHARACTER*24 CASENAM, CCLVAL
INTEGER ICLIP(4)
LOGICAL PRESNT
C
C EQUIVALENCE
C
EQUIVALENCE (LS(1), ISTM), (LS(6), ISTLD)
EQUIVALENCE (LS(7), ISTBC), (LS(2), ISTPM)
C
C DATA
c
DATA ICLIP /4*0/
o
DATA ISTAT, XG2S, XPAR
1 / 0, 4H G2S, 4H PAR /

DATA XLDS / 4H LDS /

GIST Tutorial / Part 3
Section 3.3: The G2S Adaptor / Subroutine G2SI

C
C
C
C

C....

C.l..

C **#*

C ***
C **%x
C **%*x%

10

20

C.O.l

C.Q..

C **#

Cl..'

C
c....

LOGIC

INITIALIZE 1/0 DEVICE NUMBERS
CALL INITIO

ISLIN =5
ISLOUT = 6
ISLTTI = 5
ISLTTO = 6
ISLNET = 25

PRINT OPENING MESSAGE
WRITE (ISLOUT,2000) G2SVER(1)

READ CASE NAME
CHECK FOR NETWORK CONTROL

CALL CLMODE (ICLIP,1,0)
READ (ISLNET,1000,END=10,ERR=10) CASENAM

WRITE (ISLOUT,2001) CASENAM
GO TO 20
CALL CLNEXT (' JOB: ', 'l ', ITEMS)

IF (ITEMS .EQ. 0) GO TO 800
CASENAM = CCLVAL (1)

CALL CC2H (CASENAM(1:1) ,XJOB(1) ,4)
CALL CC2H (CASENAM(5:5) ,XJOB(2) ,4)

CHECK PRESENCE OF GIFTS DATA-BASE
IF (.NOT.PRESNT (XPAR)) GO TO 801
CALL 1IN PAR

CHECK MODEL DEFINITION STATUS ~
IF (ISTM.LT.1) GO TO 810

TEMPORARY: SET LOAD STATUS SWITCH IF 'LDS' FILE EXISTS
IF (PRESNT (XLDS)) ISTLD = 1

IF (ISTLD.LT.1l) GO TO 820

IF (ISTBC.LT.1) GO TO 830

IF (ISTPM.GT.0) WRITE (ISLOUT,8400)

INITIALIZE GIFTS 1/0 BUFFERS
LOCPTS =
NBPTS =
LOCELT
NBELT
LOCMAT
NBMAT
LOCTHS
NBTHS
LOCLDS
NBLDS
LOCELD
NBELD

HOHOFHFOFHFOKFHOMO

CREATE STAGS PREPROCESSING INPUT FILE: 'CASE'.GZS

PAGE 10

GIST Tutorial / Part 3 PAGE 11
Section 3.3: The G2S Adaptor / Subroutine G2SI
NG2S = 0
RETURN
ERROR EXITS

anNnn O

800 ISTAT = -1
CALL G2S F
801 WRITE (ISLOUT,8010)
! 8010 FORMAT (/41H >> ERROR >> GIFTS DATA-BASE NOT FOUND.
1 SX,6H[G2S1]/)
4/ ISTAT = -1
. CALL G2S F
i) . 810 WRITE (ISLOUT,8100)
= 8100 FORMAT (/49H >> ERROR >> GIFTS MODEL NOT GENERATED. [G2SI])
. ISTAT = -1
J CALL G2S F
820 WRITE (1ISLOUT,8200)
b 8200 FORMAT (/49H >> ERROR >> GIFTS LOADS NOT GENERATED. [G2S1I})
b ISTAT = -1
CALL G2S F
830 WRITE (ISLOUT,8300)
8300 FORMAT (/44H >> ERROR >> GIFTS BOUNDARY CONDITIONS NOT
1 20H INTRODUCED. [(G2SI])
ISTAT = -1
CALL G2S F
8400 FORMAT (/52H >> WARNING >> GIFTS POINT MASSES WILL BE IGNORED.
1 8H [G2S1I1])

C
C FORMATS
C

1000 FORMAT (A9)

2000 FORMAT (//12H <<>> G 2 § ,11%,25H [GIFTS->STAGS ADAPTOR |
. 1, 14X, 6H GIST/A4)

2001 FORMAT (7H JOB: A9 /)

C

END

GIST Tutorial / Part 3 PAGE 12
Section 3.3: The G2S Adaptor / Subroutine G2SMC

C=DECK G2SMC
SUBROUTINE G2SMC
C
C=PURPOSE TRANSFORM GIFTS MODEL CONFIGURATION DATA TO STAGS INPUT
C=AUTHOR G.M.STANLEY
C=VERSION APR 20 1981

C=EQUIPMENT CDC VAX

C=KEYWORDS G2S MODEL CONFIGURATION
C=KEYWORDS GIFTS STAGS ADAPTOR

Cc

C=BLOCK ABSTRACT

C G2SMC TRANSFORMS GIFTS NODE AND ELEMENT DEFINITION DATA
Cc INTO THE CORRESPONDING STAGS (GENERAL UNIT) INPUT DATA.
Cc THE INPUT RECORDS ARE GENERATED ON FILE 'CASE'.G2S.

C

C=END ABSTRACT

-C

C COMMON
C

COMMON /STATUS/ 1STAT,ISLG2S,NG2S
COMMON /FAC/ FAT(20,20)
INTEGER FAT

COMMON /THSX/ A,AQ,AP,IPP,I1QQ,JJ,2Gl,Y¥Gl,2G2,YG2,

1 201,v¥01,202,Y02,ALFA

REAL IPP,IQQ,JJ
C
C.... GIFTS

COMMON /CMDSLT/ ISLIN, ISLOUT, ISLLST,ISLTTI, ISLTTO, ISLLPT

COMMON /PAR/ LHV(13),LGL(5) ,LP(25),LS(16),LM(11)

COMMON /PTS/ NU,NS, ISTRKP, IPTPLT,VCSMC(9) ,PTSPAD(8),

1 LMN, INTP, NLDREC, NBL, NFR, MFP

COMMON /ELT/ NEU,NES, ISTRKE, IELPLT, IT, IORD, IST, IAPL,NLDRC2,
1 NCP, NGP, NLFLG, NSTPT, NLAYR, ISTPTR, NMAT, NTHS, FACT(5) ,
2 ECCEN, ELTPAD(3) ,ALPHID,LCP(27)

COMMON /MAT/ MATPTR, IMT,LCOLRM(3) ,PMAT(11)
COMMON /THS/ ITHPTR, ITT, IPTRCS,LCOLRT(3),TH(15)

C

CI... STAGS
COMMON /STAGS/ NSTGM,NSTGFl,NSTGF2,NSTGN,NSTGE(4) ,NSTGL
COMMON /STGE/ LCPS(10)
COMMON /STGN/ XS(3) ,DS(6)

C

C DIMENSION

C
DIMENSION THX(15) ,LF(12)

C

C EQUIVALENCE

C
EQUIVALENCE (THX(1), A), (LP(1), NGPT), (LP(2), NGPA)
EQUIVALENCE (LP(3), NELTT), (LP(8), NMATT), (LP(9), NTHST)
EQUIVALENCE (LP(11), NBCPT), (TH(15),THETA), (LP(18), NSTRP)

C

C DATA

o

DATA DEG2RAD/.017453293/, RAD2DEG/57.29577951/
DATA BLANK, E210, E300, E320, E410
1 / 4H » 3H210, 3H300, 3H320, 3H410 /

T pe .
e i o i i o
Y . . ke o _ . f 3 . v g i il paf &

GIST Tutorial / Part 3 PAGE 13
Section 3.3: The G2S Adaptor / Subroutine G2SMC

K

' c LOGIC

] C

F C.... OPEN GIFTS DATA-BASE
CALL OPN PTS

CALL OPN ELT

CALL OPN THS ‘

CALL OPN MAT

o=

GENERATE NODAL RECORDS q

DO 100 IN=1,NGPT

OO0 00000

+ee« INPUT GIFTS NODAL RECORD
IR = IN
CALL 1IN PTS (IR)

a0

eees INITIALIZE STAGS NODAL RECORD
DC 30 131.3
30 XS(I) = VCSMC(I)
DO 40 13116
40 LF(I) = 0
IAUX =0

C .+s« ILGNORE DOF FOR NON-ACTIVE NODES
IF (NU.LE.O) GO TO 70
IF (NU.EQ.32767) GO TO 70

C «+++ TRANSFER DOF PATTERN
CALL UPF (MFP,LF)
IF (LMN.GT.0) IAUX =]

c «ee. WRITE 'PRIMARY NODAL' RECORD (S-1)
70 WRITE (ISLG2S,2001) IN,XS,(LF(I),I=1,6),IAUX
NG2S = NG2S + 1

+ee. GET AUXILIARY COORDINATE TRANSFORMATION
' ... (COLUMNS OF MATRIX = ROTATED UNIT VECTORS)
| IF (IAUX.LE.0) GO TO 100
. CALL IN PTS (LMN) |
! DO 80 I=1,6 7
DS(I) = VCSMC(I)

(2N eXe

x %

*** COMPENSATE FOR GIFTS "ERROR" =~ LEFT-HANDED TRANSFR. MATRIX
'

IF (I.GT.3) DS(1) = -DS(I)

80 CONTINUE ﬂ
4

oo 0O 00000
»

eess WRITE 'AUXILLIARY NODAL' RECORD (§-2)
WRITE (ISLG2S,2002) DS
NG2S = NG2S + 1

C

_ ONTINUE
oA 100 commmue o y

2 Eidicnivibeaail. PN i i - 3 S

GIST Tutorial / Part 3
Section 3.3: The G2S Adaptor / Subroutine G2SMC

a oaon leXg! O0Onon OO0O0n annn

aon

OO0

GENERATE ELEMENT RECORDS

NTO = 0
NMO = 0
IESTAG = 0
NSTRP = 1

LUMPED ELEMENTS (INOPERATIONAL)

IF (NSTGE(1) .EQ.Q) GO TO 200
GO TO 200

1-D ELEMENTS

200 IF (NSTGE(2) .EQ.0) GO TO 300
NE2 = 0
DO 290 IE=1,NELTT

LA 2]

207

210

IEGIFT = IE

INPUT GIFTS ELEMENT RECORD

CALL 1IN ELT (IE)

IF (NEU.LE.OQ) GO TO 290
IF (IAPL.NE.O) GO TO 290
IF (IT.NE.2) GO TO 290

STRAIGHT BEAMS

BM = E210

IF (ALPHID.NE.BLANK) BM = E210
DO 207 1I=1,3 ’
LCPS(1I) = LCP(I)

ICROSS = FAT(NTHS,NMAT)

DEFINE CROSS-SECTION ORIENTATION
IF (NTHS.EQ.NTO) GO TO 220
CALL IN THS (NTHS)
IF (ITHPTR.NE.NTHS) CALL 1IN THS (ITHPTR)
DO 210 I=1,15

THX(I) = TH(I)

TH(I) = 0.
CONTINUE
IF (IPTRCS.GT.O0) CALL IN THS (IPTRCS)
XSI = - (ALFA*RAD2DEG + 90.)

S = SIN (THETA*DEG2RAD)
C = COS (THETA*DEG2RAD)
ECY = 2Gl*C - YGl*S
ECZ = -ZGl*S - YGl*C
NTO = NTHS

eeees SET NONLINEARITY SWITCHES

C **+ TEMPORARY CORRECTION TO BEAM DEFAULT SWITCH SETTINGS
220

IF (NLFLG.EQ.3) NLFLG = 0
ILIN = NLFLG/2

PAGE 14

B e A AT P A

e T A AT Sy S

”

GIST Tutorial / Part 3
Section 3.3: The G2S Adaptor / Subroutine G2SMC

C LK BN]

Cc
C

IPLAS = NLFLG - 2*ILIN

IPLAS = 1 ~ IPLAS

CALL IN MAT (NMAT)

IF (MATPTR,.NE.NMAT) CALL IN MAT (MATPTR)
IF (IMT .NE. 5) IPLAS = 0

WRITE 'BEAM ELEMENT' RECORD (T-2)

WRITE (ISLG2S,2003) (LCPs(I1),I=1,3),BM,ICROSS,
Xs1,ECY,ECZ,ILIN, IPLAS

NG2S = NG2S + 1

IESTAG = IESTAG + 1

NE2 = NE2 + 1

OUTPUT GIFTS ELEMENT STRESS POINTER
CALL G2S ESP (IEGIFT,NSTRP,IESTAG)
IF (NE2.GE.NSTGE(2)) GO TO 300

290 CONTINUE

aaaon O

300 IF (NSTGE(3) .EQ.0) GO TO 400
NE3 = 0
DO 390 IE=1,NELTT

aa

s NeXe!

C %%

307

C LA I]

C LI I BN 3

IEGIFT = IE

INPUT GIFTS ELEMENT RECORD

CALL 1IN ELT (IE)

IF (NEU.LE.O) GO TO 390
IF (IAPL.NE.O) GO TO 390
IF (IT.NE.3.AND,.IT.NE.4) GO TO 390

STRAIGHT TRIANGLES d

IF (IT.EQ.3) TRI = E300

IF (IT.EQ.4) TRI = E320

IF (ALPHID.NE.BLANK) TRI = ALPHID
DO 307 I=1,3

LCPS(1) = LCP(I)

IWALL = FAT(NTHS,NMAT)

ZETA = FACT(5)

EC2 = —-ECCEN

SET NONLINEARITY SWITCHES

ILIN = NLFLG/2

IPLAS = NLFLG ~ 2*ILIN

IPLAS = 1 - IPLAS

CALL IN MAT (NMAT)

IF (MATPTR.NE.NMAT) CALL IN MAT (MATPTR)
IF (IMT .NE, 5) IPLAS = 0

WRITE 'TRIANGULAR ELEMENT' RECORD (T-3)

WRITE (ISLG2S,2004) (LCPS(1),I=1,3),TRI, IWALL,
2ETA, ECZ, ILIN, IPLAS

NG2S = NG2S + 1

IESTAG = IESTAG + 1

NE3 = NE3 + 1

M_-._ . SRS

PAGE 15

GIST Tutorial / Part 3
Section 3.3: The G2S Adaptor / Subroutine G2SMC

Ceeeveeees OUTPUT GIFTS ELEMENT STRESS POINTER
CALL G2S ESP (IEGIFT,NSTRP, IESTAG)
IF (NE3.GE.NSTGE(3)) GO TO 400

390 CONTINUE

anoonoa o0

400 IF (NSTGE(4) .EQ.0) GO TO 500

NE4 = 0

DO 490 IE=1,NELTT
IEGIFT = IE
CALL 1IN ELT (IE)
IF (NEU.LE.O) GO TO 4
IF (IAPL.NE.O) GO TO 490
IF (IT.NE.5.AND.IT.NE.6) GO TO 4

+seo STRAIGHT QUADRILATERALS

QUAD = E410
Xhk IF (ALPHID.NE.BLANK) QUAD = ALPHID
LCPS(1) = LCP(1)
LCPS(2) = LCP(2)
LCPS(3) = LCP(4)
LCPS(4) = LCP(3)
IWALL = FAT(NTHS,NMAT)
ZETA = FACT(5)
ECZ = -ECCEN

a o0o0

C eees SET NONLINEARITY SWITCHES
ILIN = NLFLG/2
IPLAS = NLFLG - 2*ILIN
IPLAS = 1 - IPLAS
CALL 1IN MAT (NMAT)
IF (MATPTR.NE,.NMAT) CALL 1IN MAT (MATPTR)
IF (IMT .NE. 5) IPLAS = 0

C «e«e WRITE 'QUADRILATERAL ELEMENT' RECORD (T-4)
WRITE (ISLG2S,2005) (LCPs(I),I=1,4),QUAD,IWALL,
1 ZETA,ECZ, ILIN, IPLAS
NG2S = NG2S + 1
IESTAG = IESTAG + 1
NE4 = NE4 + 1
C
Ceeeeeeees OUTPUT GIFTS ELEMENT STRESS POINTER
CALL G2SESP (IEGIFT,NSTRP,IESTAG)
IF (NE4.GE.NSTGE(4)) GO TO 500

C
490 CONTINUE
C
500 CONTINUE
(o
CALL CLS PTS
CALL CLS ELT

CALL CLS THS
CALL CLS MAT

PAGE 16

T “**T r!

GIST Tutorial / Part 3
Section 3,3: The G2S Adaptor / Subroutine G2SMC

Nnnoon

2001
2002
2003
2004
2005

RETURN
FORMATS

FORMAT (1X,15,4H,,,, 3(5X,El10.4),2(1X,311),1X,I11,1X, 5H$ S-1)
FORMAT (6(2X,E10.4))
FORMAT (lx,315,1x,A3,lx,I3,3(2X,EIO.4),Z(IX,II),2X, SH$ T‘Z)
FORHAT (1X,3I5,1X,A3,1X,I3,2(2X,EIO.4),12X,2(1X,Il),2X, SHS T-3)
FORHAT (lX,4IS,1X,A3,1X,I3,lH, 36X,SH$ T-4,

/25%X,2(2X,E10.4) ,2(1X,11),1X, 1HS)

END

PAGE 17 '

b,

1

GIST Tutorial / Part 3

Section 3.3:

The G2S Adaptor / Subroutine G2SML

C=DECK G2SML

SUBROUTINE G2SML

C
C=PURPOSE TRANSFORM GIFTS LOAD DATA TO STAGS INPUT
C=AUTHOR G.M.STANLEY
CsVERSION DEC 5 1980
C=UPDATED MAY 29 1980 (G.M.STANLEY]
C=EQUIPMENT CDC VAX
C=KEYWORDS G2S LOADS
C=KEYWORDS GIFTS STAGS ADAPTOR
C
C=BLOCK ABSTRACT
C
C G2SML TRANSFORMS GIFTS SPECIFIED FORCE AND DISPLACEMENT
C DATA INTO THE CORRESPONDING STAGS (LOAD SYSTEM) INPUT DATA.
c THE INPUT RECORDS ARE GENERATED ON FILE 'JOB'.G2S.
c
C=END ABSTRACT
C
C COMMON
C
COMMON /STATUS/ ISTAT, ISLG2S,NG2S
C
C.... GIFTS o
COMMON /CMDSLT/ ISLIN, ISLOUT,ISLLST,ISLTTI,ISLTTO,ISLLPT i
COMMON /PAR/ LHV(13),LGL(5},LP{(25),LS(16),LM(11) -
COMMON /PTS/ NU,NS,ISTRKT,IPTPLT,VCSMC(9) ,PTSPAD(8), :
1 LMN, INTP, NLDREC, NBL, NFR, MFP g
COMMON /LDS/ PV(8) .
COMMON /ELT/ NEU,NES, ISTRKE, IELPLT, IT, IORD, IST, IAPL,NLDRC2,
1 NCP,NGP, NLFLG, NSTPT,NLAYR, ISTPTR, NMAT, NTHS, FACT(5) ,
2 ECCEN, ELTPAD(3) ,ALPHID,LCP(27)
COMMON /ELD/ NELDE,NELDC,NELDT,NELDP,NELDNP,NELDNC, ELDV(3,8),
1 ELDVR(3) ,ELDVRM(3) ,ELDRES, ELDREM i
c .
C.... STAGS 2
COMMON /STAGS/ NSTGM,NSTGFl,NSTGF2,NSTGN,NSTGE(4) ,NSTGL
C i
c DIMENSION !
C u
DIMENSION NRECL(2) ,NRECI(2),LF(12),PL(6),TL2G(3,3) }
LOGICAL PRESNT
C 1
c EQUIVALENCE
C
. EQUIVALENCE (PV(1), LDTYPE), (PV(2) , VAL), (PV(4) , LIVE) 3
EQUIVALENCE (ISTRKE, IESTAG) i
EQUIVALENCE (LP(1), NGPT), (LP(14), NLCA), (LP(3), NELTG) :
C
C DATA
C
DATA XELD/4H ELD/
C
C LOGIC
c
C.... OPEN GIFTS DATA-BASE

CALL OPN LDS
CALL OPN PTS

s et MO . - . kit

GIST Tutorial / Part 3 PAGE 19
Section 3.3: The G2S Adaptor / Subroutine G2SML

IF (.NOT.PRESNT (XELD)) GO TO 10
CALL OPN ELD

CALL OPN ELT

IELD =]

PRELIMINARY PASS -- COUNT RECORDS

OOO0O0

10 NSTGL = 0
NSTGI = 0
DO 20 1'102
v NRECL(I) = 0
: 20 NRECI(I) = 0
NLIVE = 0
: Cc
. C.... EXAMINE GIFTS "LOAD-CASES"
' Cc
&
! DO 200 LCASE = 1,NLCA
: CALL 1IN LDS (0,LCASE)
IF (LDTYPE.EQ.O0) GO TO 220
IF (LDTYPE.EQ.l1 .AND. VAL.LT.O0) GO TO 270
GO TO 810

«ee. "LOAD SYSTEMS"

eleNeXeke

220 IF (NSTGL .GE. 2) GO TO 291
NSTGL = NSTGL + 1
ILIVE = LIVE
IF (ILIVE .GT. 0) NLIVE = NLIVE + 1
IF (NLIVE .GT. 1) GO TO 820

C
C.... COUNT NODAL LOAD RECORDS
C
DO 100 IN = 1, NGPT
CALL 1IN PTS (IN)
C
‘ Ce... SKIP DELETED AND "BOUNDARY CONDITON" PTS
i IF (NU .LE. 0) GO TO 100
- IF (NU .EQ. 32767) GO TO 100
C
CALL 1IN LDS (IN,LCASE)
C
, : C.... UNPACK GIFTS NODAL DOF PATTERN
! CALL UPF (MFP,LF)
C
IF (LMN ,LE. 0) GO TO 50
C
C.... Transform "Forces" from Global to Local
C
- IAUX = LMN
CALL 1IN PTS (IAUX)
” K =290

DO 302 J=1,2

DO 302 1’1'3
K=K+ 1

TL2G(I,J) = VCSMC(K)

AR

GIST Tutorial / Part 3 PAGE 20
Section 3.3: The G2S Adaptor / Subroutine G2SML

C
C.... COMPENSATE FOR GIFTS TRANSFORMATION ERROR
IF (J.EQ.2) TL2G(I,J) = -TL2G(I,J)

C
302 CONTINUE
(o
DO 310 I=1,3
PL(1) = 0.
PL(I+3) = 0,
DO 310 J=1,3
- K=J+ 6
b IF (LF(K) .EQ.0) PL(I) = PL(I) + TL2G(J,I) * PV(J)
. v IF (LF(K+3) .EQ.0) PL(I+3) = PL(I+3) + TL2G(J,I) * PV(J+3)
k 310 CONTINUE
2 Cc
L DO 320 I=1,6
i,’ 320 IF (LF(I+6) .EQ.0) PV(I) = PL(I)
i c
‘) Ceee. OUTPUT (OVERWRITE) "TRANSFORMED" GIFTS NODAL LOAD RECORD
: CALL OUT LDS (IAUX,LCASE)
C
C.... COUNT ACTIVE LOAD COMPONENTS
C
50 DO 60 ID = 1, 6
IF (LF(ID+6)) 30, 30, 40
C

‘ Ce... Specified Force
o 30 IF (PV{(ID).NE.O.) NRECL (NSTGL) = NRECL(NSTGL) + 1
[GO TO 60
C
C.... Specified Displacement
40 NRECL(NSTGL) = NRECL{(NSTGL) + 1
60 CONTINUE
100 CONTINUE

”

C
C..... COUNT ELEMENT ("LIVE") LOAD RECORDS
C

IF (ILIVE.LE.O .OR. IELD.LE.O0) GO TO 200
DO 250 IE = 1, NELTG
C
C.... Input GIFTS Element Directory Record
CALL 1IN ELT (IE)
C
IF (NEU .LE. 0) GO TO 250
IF (NLDRC2 ,EQ. 0) GO TO 250
N o
; * C.... INnput GIPTS Element Load Record
: CALL 1IN ELD (NLDRC2)
C
i 255 IF (NELDC .EQ. LCASE) GO TO 260
IF (NELDNP .EQ. 0 .OR. NELDNC .EQ. O) GO TO 250
CALL 1IN ELD (NELDNP)
GO TO 255
260 IF (NELDT .NE. 3) GO TO 250
C
W=20,
DO 263 I=1,NCP
IF (ELDV(3,I) .EQ. 0.) GO TO 263
W=W + ELDV(3,1I)

W. “

_ GIST Tutorial / Part 3 PAGE 21
k Section 3.,3: The G2S Adaptor / Subroutine G2SML

i

263 CONTINUE
c
IF (W .NE. 0.) NRECL (NSTGL) = NRECL{(NSTGL) + 1
C
; 250 CONTINUE
| GO TO 200

-y . C.o.. INITIAL CONDITIONS i

§{ 270 IF (NSTGI .GE. 2) GO TO 292 ;
1 NSTGI = NSTGI + 1
£ : DO 275 IN = 1, NGPT
8! CALL IN PTS (IN)
! IF (NU .EQ. 32767) GO TO 275
A CALL IN LDS (IN,LCASE)
3 DO 280 ID = 1, 6
280 IF (PV(ID) .NE. 0.) NRECI(NSTGI) = NRECI(NSTGI) + 1
275 CONTINUE
GO TO 200

GO TO 200

£
)
B
'? 291 WRITE (ISLOUT,9001) LCASE
g 292 WRITE (ISLOUT,9002) LCASE

; 200 CONTINUE

L C.... Write STAGS "Load Summary" Record
' WRITE (ISLG2S,2001) NSTGL, NSTGI
NG2S = NG2S + 1

a;~ — e
C FINAL PASS -- GENERATE RECORDS
C —memmemeemmaccmmcerccecsc e e e —m e e e e ——————————
C
ISTGL = 0
ISTGI = 0
DO 500 LCASE = 1,NLCA
CALL 1IN LDS (0,LCASE)
, IF (LDTYPE .EQ. 0) GO TO 410
s IF (LDTYPE.EQ.1 .AND. VAL.LT.0.) GO TO 510
GO TO 810
o
C
* C.... "LOAD SYSTEM" (GENERATION)
* C
C

410 IF (ISTGL .GE. 2) GO TO 500
ISTGL = ISTGL + 1
ILIVE = LIVE
‘ IFLG = 0
. IF (ILIVE .GT. 0) IFLG = 2

eXg)

ceeso Write Load-System Summary Record

WRITE (ISLG2S,2002) ISTGL,NRECL(ISTGL) , IFLG ;|
NG2S = NG2S + 1
- .—__—_.-_——-—————-—-—-——‘-‘ ~ '

-Lunanﬁiné.;«.

GIST Tutorial / Part 3 PAGE 22
Section 3.3: The G2S Adaptor / Subroutine G2SML

DO 300 IN=1,NGPT

CALL 1IN PTS (IN)

naO 0O O

esss SKIP DELETED AND "BOUNDARY CONDITION" PTS
IF (NU .LE. 0) GO TO 300
IF (NU .EQ. 32767) GO TO 300

- C
CALL 1IN LDS (IN,LCASE)
C
C.... UNPACK GIFTS NODAL DOF PATTERN
CALL UPF (MFP,LF)
C
C.... INPUT "TRANSFORMED" GIFTS NODAL LOAD RECORD
IF (LMN .GT. 0) CALL IN LDS (LMN,LCASE)
C
DO 360 ID=1,6
LFI = 1 - LF(ID+6)
LT = 2*LFI -1
IF (LT.EQ.1.AND.PV(ID) .EQ.0.) GO TO 360
C
C.... Write STAGS Nodal Load Record

IE=0
WRITE (ISLG2S,2003) Ppv(ID), LT, ID, IN, IE
NG2S = NG2S + 1

360 CONTINUE

300 CONTINUE

C

IF (ILIVE.LE.0 .OR. IELD.LE.O) GO TO 500
c
C.... GENERATE ELEMENT ("LIVE") LOAD RECORDS
C .

DO 450 IE = 1, NELTG :
(o

CALL 1IN ELT (IE)

IF (NEU .LE. 0) GO TO 450

IF (NLDRC2 .EQ. 0) GO TO 450
c

CALL 1IN ELD (NLDRC2)
420 IF (NELDC .EQ. LCASE) GO TO 430
IF (NELDNP .EQ. 0 .OR. NELDNC .EQ. 0) GO TO 450
CALL 1IN ELD (NELDNP)
GO TO 420
430 IF (NELDT .NE. 3) GO TO 450

w = O.
DO 433 I=1,NCP
IF (ELDV(3,I) .EQ. 0.) GO TO 433
W = W + ELDV(3,I)
433 CONTINUE
Ir (W .EQ. 0.) GO TO 450

.
-

" &)y
* s 8 8

& O

NCP

i o ¢ 3TAGS [lement Load Record ‘

GIST Tutorial / Part 3
Section 3.3: The G2S Adaptor / Subroutine G2SML

WRITE (ISLG2S,2003) PP,LT,ID,IN, IESTAG
NG2S = NG2S + 1

O

450 CONTINUE
GO TO 500

eees INITIAL CONDITIONS (GENERATION)

e¥eXeXzXg

510 IF (ISTGI .GE. 2) GO TO 500
ISTGI = ISTGI + 1

P ICFLG = VAL + 1
C
C.... Write Initial-Condition Summary Record
IFLG = 0

WRITE (ISLG2S,2002) ICFLG, NRECI(ISTGI), IFLG
NG2S = NG2S + 1

C,»+», GENERATE NODAL DISPLACEMENT/VELOCITY RECORDS
C

DO 520 IN = 1, NGPT

C
CALL 1IN PTSs (IN)
IF (NU .LE. 0 .OR. NU .EQ. 32767) GO TO 520
CALL 1IN LDS (IN,LCASE)
c
LT = -1
DO 530 ID =1, 6
IF (PV(ID) .EQ. 0.) GO TO 530
Cc
C.... Write Nodal Displ./Veloc. Record
IE=0 .
WRITE (ISLG2S,2003) PV(ID), LT, ID, IN, IE
C

530 CONTINUE
520 CONTINUE

500 CONTINUE

o000 O

eess WRITE "TEMPORARY" 'OUTPUT CONTROL' RECORD (V-1)
WRITE (ISLG2S,2005)
NG2S = NG2S + 1

) C.... CLOSE GIFTS DATA-BASE
CALL CLS LDS
CALL CLS PTS
IF (IELD .EQ. 0) RETURN
CALL CLS ELD
CALL CLS ELT

RETURN
ERROR EXITS

anon O

810 WRITE (ISLOUT,8100) LCASE,LDTYPE
8100 FORMAT (/52H >> ERROR >>

UNADAPTABLE LOAD-CASE TYPE.

PAGE 23

b

. .

N . aae

P R i ian

mly &

fi X

CORRVRININE. -4 ® o2y AT

i

GIST Tutorial / Part 3 PAGE 24
Section 3.3: The G2S Adaptor / Subroutine G2SML

1 /15X, 9HLOAD CASE, 3X, 9HLOAD TYPE/19X,15, 2X,I15/
2 /20X, 7H VAL = ,E12.4,5X,7H LIVE =,I4/)
ISTAT = -1
CALL G2S F
o
820 WRITE (ISLOUT,8200) LCASE
8200 FORMAT (/49H >> ERROR >> "LIVE" LOADS DETECTED IN MORE THAN
1 23H ONE ACTIVE LOAD-SYSTEM//20X,12H LOAD-CASE = 15/
2 12H << G2SML <</)
ISTAT = -1
CALL G2S F

Cc
c FORMAT
C

2001 FORMAT (2(1X,15),54X, SHS U-1)
2002 FORMAT (3(1X,15),48X, S5HS U-2)
2005 FORMAT (1X,6(4X,1H0),35X,5HS EOF)
o
9001 FORMAT (/51H >> WARNING >> ONLY TWO "LOAD~-SYSTEMS" PERMITTED;
1 /16X, 20H GIFTS LOAD-CASE NO. I5,9H IGNORED./)
9002 FORMAT (/48H >> WARNING >> ONLY TWO "1.C. SETS" PERMITTED:;
1 /16X, 20H GIFTS LOAD-CASE NO. I5,9H IGNORED./)
C
END

GIST Tutorial / Part 3 PAGE 25
Section 3,3: The G2S Adaptor / Subroutine G2SMR

C=DECK G2SMR
SUBROUTINE G2SMR

C

C=PURPOSE TRANSFORM GIFTS MODEL RESOURCE DATA TO STAGS INPUT

C=AUTHOR G.M.STANLEY

C=VERSION JAN18/1981

C=EQUIPMENT CDC VAX

C=KEYWORDS G2S MODEL RESOURCES

C

C=BLOCK ABSTRACT

Cc

C G2SMR TRANSFORMS GIFTS MATERIAL AND THICKNESS GROUP DATA
C INTO STAGS MATERIAL AND FABRICATION DATA, GENERATING
C THE APPROPRIATE INPUT RECORDS ON FILE 'CASE'.G2S.

C

C=END ABSTRACT

C

C COMMON

C

COMMON /STATUS/ I1STAT, ISLG2S,NG2S

COMMON /FAC/ FAT(20,20)

INTEGER FAT

COMMON /THSX/ A,AQ,AP, IPP,IQQ,JJ,2G,YG, 2G2,YG2,20,Y0, 202,Y02,ALFA
REAL IPP,IQQ,JJ

e}

C.... GIFTS
COMMON /CMDSLT/ ISLIN, ISLOUT, ISLLST, ISLTTI,ISLTTO, ISLLPT
COMMON /PAR/ LHV(13) ,LGL(S),LP(25),LS(16),LM(11)
COMMON /MAT/ MATPTR, IMT,LCOLRM(3),PMAT(11)
COMMON /THS/ ITHPTR, ITYPE, IPTRCS,LCOLRT(3) ,TH(15)

c

C.... STAGS h
COMMON /STAGS/ NSTGM,NSTGF1,NSTGF2,NSTGN, NSTGE (4) , NSTGL
COMMON /STGF1/ SA,SY,SZ,SIY,SI%,SIYZ,ISO
COMMON /STGF2/ MATL,TL, ZETL, LSO

C

C DIMENSION

C
DIMENSION THX(15)

C

C EQUIVALENCE

C
EQUIVALENCE (A, THX(1))
EQUIVALENCE (LP(8),NMATT), (LP(9) ,NTHST)
EQUIVALENCE (PMAT(1l), NSEG), (PMAT(2), NREC)
EQUIVALENCE (PMAT(l), E), (PMAT(2), VNU), (PMAT(3), G)
EQUIVALENCE (PMAT(S5), RHO), (PMAT(7), TEX), (TH(1S) , THETA)
EQUIVALENCE (PMAT(1), SIG), (PMAT(4), EPS)

C

C DATA

C
DATA D2R /.017453293/

C

C

C LOGIC

c .

C.... OPEN GIFTS DATA~BASE

CALL OPN MAT
CALL OPN THS

GIST Tutorial / Part 3 PAGE 26
Section 3.3: The G2S Adaptor / Subroutine G2SMR

GENERATE MATERIAL PROPERTY RECORDS

O0OO0O0n

DO 100 IM=1,NMATT
ITAM = IM
IR = IM
* CALL 1IN MAT (IR)
. IF (MATPTR.EQ.IR) GO TO S
IF (MATPTR.LE.O) GO TO 1
IR = MATPTR
4 CALL IN MAT (IR)
5 Go T0 (10,801,801,40,50,801,801), IMT

ISOTROPIC MATERIAL -- ELASTIC

e¥eNeNaXeXe)

+ee. WRITE 'MATERIAL HEADER' RECORD (I-1)
10 WRITE (ISLG2S,2001) ITAM
NG2S = NG2S + 1

a0

«ess WRITE 'ELASTIC PROPERTY' RECORD (I-2)
G=0.
WRITE (ISLG2S,2002) E,VNU,G,RHO,TEX
NG2S = NG2S + 1
GO TO 100

2-D ORTHOTROPIC MATERIAL -~ ELASTIC

aaonnan

eeee WRITE 'MATERIAL HEADER' RECORD (I-1)
40 WRITE (ISLG2S,2001) ITAM
NG2S = NG2S + 1

a0

eeeeo WRITE 'ELASTIC PROPERTY' RECORD (I-2)/PART 1
WRITE (ISLG2S,2003) E,VNU,G,RHO,TEX
NG2S = NG2S + 1

anon

eses ADD PROPERTIES FOR SECOND DIRECTION
CALL 1IN MAT (IR+l)
WRITE (ISLG2S,2004) E,TEX

. NG2S = NG2S + 1

{) GO TO 100

50 NESP = NSEG-1

OO0 o000 0

esee« WRITE 'MATERIAL HEADER' RECORD (I-1)
WRITE (ISLG2S,2005) ITAM,NESP
NG2S = NG2S + 1

00

eses WRITE 'ELASTIC PROPERTY' RECORD (I-2)
R = IR

GIST Tutorial / Part 3 PAGE 27
Section 3,3: The G2S Adaptor / Subroutine G2SMR :

e¥eNeXeKa N g !

55
100

110

112

CALL IN MAT (IR)
«eeo SET STAGS ISOTROPY FLAG: G=0
G =0,
WRITE (ISLG2S,2002) E,VNU,G,RHO,TEX
NG2S = NG2S + 1

eees WRITE 'PLASTICITY CURVE' RECORDS (I-3)

DO 55 I=1,NESP
IR = IR+l
CALL 1IN MAT (IR)
IF (I.LT.NESP) WRITE (ISLG2S,2006) EPS,SIG
IF (I.EQ.NESP) WRITE (ISLG2S,2007) EPS,SIG
NG2S = NG2S + 1

CONTINUE

CONTINUE

GENERATE 1-D (BEAM) FABRICATION RECORDS

IF (NSTGF1.EQ.0) GO TO 250
ITAB = 0
DO 210 NT=1,NTHST
DO 200 NM=1,NMATT
IF (FAT(NT,NM) .NE.-1) GO TO 200
ITAB = ITAB+1
FAT(NT,NM) = ITAB

eees INPUT GIFTS THICKNESS RECORD
IR = NT
CALL IN THS (IR)
IF (ITHPTR.EQ.NT) GO TO 110
IF (ITHPTR.LE.O) - GO TO 810
IR = ITHPTR
CALL 1IN THS (IR)
IF (ITYPE.NE.O) GO TO 812

«ee.s CHECK EXISTENCE OF MATERIAL NM
JR = NM
CALL IN MAT (JR) 4
IF (MATPTR.LE.O) GO TO 814

«ess SAVE COMPUTED PROPERTIES, GET USER PROPERTIES
DO 112 I=]1,15
THX(I) = TH(I)
TH(1) = 0,
CONTINUE
IF (IPTRCS.GT.0) CALL 1IN THS (IPTRCS)

eeess WRITE 'CROSS-SECTION HEADER' RECORD (J-1)

KCROSS = 2
NSUB = 1
MATB = NM
TORJ = JJ

BETA = ALFA - THETA*D2R

SCY = (20-2ZG) * COS(BETA) + (YO-YG) * SIN(BETA)
sC2 = (20-2G) * SIN(BETA) - (YO-YG) * COS(BETA) o ‘

E

GIST Tutorial / Part 3 PAGE 28
Section 3.3: The G2S Adaptor / Subroutine G2SMR

NG2S = NG2S + 1

esees WRITE 'SUBELEMENT PROPERTY' RECORD (J-3A)

SA = A

) 4 = Q.

S2z = 0.

S1IY = IQQ

SIZ = IPP
N S1YZ = 0.
! IsO =1

WRITE (ISLG2S,2010) SA,SY,Sz,SIY,SIZ,SIYZ,ISO
NG2S = NG2S + 1

200 CONTINUE
210 CONTINUE

GENERATE 2~D (SHELL) FABRICATION RECORDS

IF (NSTGF2.EQ.0) GO TO 400
ITAW = 0

DO 310 NT=1,NTHST

DO 300 NM=1,NMATT

IF (FAT(NT,NM) .NE.=-2) GO TO 300
ITAW = ITAW+1

FAT(NT,NM) = ITAW

INPUT GIFTS THICKNESS RECORD
IR = NT
CALL IN THS (IR)

IF (ITHPTR.EQ.NT) GO TO 220
. IF (ITHPTR.LE.O) , GO TO 810

IR = ITHPTR ‘

CALL 1IN THS (IR)

IF (ITYPE.NE.O) GO TO 812

CHECK EXISTENCE OF MATERIAL NM
JR = NM

CALL 1IN MAT (JR)

IF (MATPTR.EQ.NM) GO
. IF (MATPTR.LE.O) GO
JR = MATPTR

CaLL IN MAT (JR)

TO 225
TO 814

esee CHECK FOR COMPOSITE MATERIAL
225 IF (IMT.EQ.7) GO TO 801

.
nono 00

sees WRITE 'WALL-SECTION HEADER' RECORD (K-1)
KWALL = 1
NLAY =]
, NLIP = 5
- - NSMRS = 0
WRITE (ISLG2S,2012) ITAW,KWALL,NLAY,NLIP,NSMRS
NG2S = NG2S + 1

«e+. WRITE 'GENERAL LAYERED SHELL PROPERTY' RECORD (K-2)
MATL = NM
TL = TH(1)

GIST Tutorial / Part 3 PAGE 29

Section 3.3:

The G2S Adaptor / Subroutine G2SMR

ZETL = 0.

LSO =1

WRITE (ISLG2S,2014) MATL,TL,2ETL,LSO
NG2S = NG2S + 1

300 CONTINUE
310 CONTINUE

400 CONTINUE

eXg!

esss CLOSE GIFTS DATA-BASE

CALL CLS THS
CALL CLS MAT

RETURN

a0 O

ERROR EXITS

801 WRITE (ISLOUT,8010) 1IM,IMT

8010 FORMAT (/S50H >> ERROR >> UNADAPTABLE MATERIAL TYPE. [G2SMRI
1//15X,12HMATERIAL NO.,3X,4HTYPE/21X,I5,3X,15/)
ISTAT = -1
CALL G2S F

810 WRITE (ISLOUT,8100) NT

8100 FORMAT (/30H >> ERROR >> THICKNESS GROUP I5
1,378 IS REFERENCED BUT UNDEFINED. [G2SMRI]/)
ISTAT = -1
CALL G2S F

812 WRITE (ISLOUT,8120) NT,ITYPE

8120 FORMAT (/51H >> ERROR >> UNADAPTABLE THICKNESS TYPE. [G2SMRI]
1//15X,13HTHICKNESS NO.,3X,4HTYPE/22X,15,3X,I5/)
ISTAT = -1
CALL G2S F

814 WRITE (ISLOUT,8140) NM

8140 FORMAT

(/29H >> ERROR >> MATERIAL GROUP 1I5

1,37H IS REFERENCED BUT UNDEFINED. [G2SMR]/)
ISTAT = -1
CALL G2S F

ann

2001 FORMAT
2002 FORMAT
2003 FORMAT
2004 FORMAT
2005 FORMAT
2006 FORMAT
2007 FORMAT
2008 FORMAT
2010 FORMAT
2012 FORMAT
2014 FORMAT

FORMATS

(1x,5(2x;E10.4) 'lH,4x,5H$ 1-2)
(1X,2X,E10.4,36X,2X,E10.4,5X,1HS)

(1X,IS,5X,IS,50X,5H$ I-1)

(1X,2(5X,E10.4) ,35X,5HS I-3)

(1X,415,3(2X,E10.4) ,9X,5HS J-1)

(3(5X,E10.4) ,1H,20X,5H% J-3/3(5X,E10.4),1X,15,15%X,1HS$)
(1X,515,40X,5H% K-1)

(1x,15,2(5X,E10.4) ,1X,15,24X,5HS K-2)

s gt oo i i

GIST Tutorial / part 3 PAGE 30
Section 3.3: The G2S Adaptor / Subroutine G2SMS

C=DECK G2SMS
SUBROUTINE G2SMS
Cc
C=PURPOSE TRANSFORM MODEL SUMMARY DATA GIFTS-TO-STAGS
C=AUTHOR G.M.STANLEY
C=VERSION 1.0

C=EQUIPMENT CDC VAX

C=KEYWORDS G2S MODEL SUMMARY

C

C=UPDATED MAR 03 1981

C

C=BLOCK ABSTRACT

C

C G2SMS COLLECTS MODEL SUMMARY PARAMETERS FROM TRE GIFTS
C DATA-BASE AND GENERATES THE CORRESPONDING STAGS INPUT
C RECORDS ON FILE 'CASE'.G2S.

C

C=END ABSTRACT

C

C COMMON

C

COMMON /STATUS/ ISTAT,ISLG2S,NG2S
COMMON /JOB/ XJOB(2) ,LJ(5)

COMMON /OPTION/ LISTOP

COMMON /FAC/ FAT(20,20)

INTEGER FAT

Ceeeo GIFTS
COMMON /CMDSLT/ ISLIN, ISLOUT,ISLLST,ISLTTI,ISLTTO, ISLLPT
COMMON /PAR/ LHV(13),LGL(S5),LP(25),LS(16),LM(11)
COMMON /ELT/ NEU, NES, ISTRKT, IELPLT,IT, IORD,IST, IAPL,NLDRC2,
1 NCP, NGP, NLFLG, NSTPT, NLAYR, ISTPTR, NMAT, NTHS,
2 FAC(5) ,ECCEN, WRKPAD(3) ,ALPHID,LCP(27)
COMMON /THS/ 1ITHPTR,I1TYPE, IPTRCS,LCOLRT(3),TH(15)

«es+ STAGS
COMMON /STAGS/ NSTGM,NSTGF1,NSTGF2,NSTGN,NSTGE(4) ,NSTGL

EQUIVALENCE

O0O0O0 OO0

EQUIVALENCE (LP(1l) ,NGPT), (LP(2),NGPA), (LP(3),NELTT)
EQUIVALENCE (LP(8) ,NMATT), (LP(9),NTHST), (LP(13),NLCT),
1 (LP(14) ,NLCA)
EQUIVALENCE (LS(1l),ISTM), (LS(6),ISTLD), (LS(7),ISTBC)

C
C DATA
C
DATA MAXMAT, MAXTHS, MAXEGO
1 / 20, 20, 1/
DATA NSTGM,NSTGF1l,NSTGF2,NSTGN,NSTGE,NSTGL /9*0/
C
C L 0 G I C
C
C.... OPEN GIFTS DATA-BASE

CALL OPN ELT
CALL OPN THS
CALL OPN MAT

o4 L ittt

GIST Tutorial / Part 3 PAGE 31
Section 3.3: The G2S Adaptor / Subroutine G2SMS

GENERAL SUMMARY RECORDS

o000 0

WRITE (ISLG2S,2000) XJOB
NG2S = NG2S + 1

‘ C

- * C.... WRITE 'CONTROL' RECORD (B-1l)
: ' ICASE = 1

9 ILIST = LISTOP

- ISAVE = 1

’ IMASS = 1

= . ITEMP = 0

- INERT = 0

. GRAVC = 0.

' WRITE (ISLG2S,2001) ICASE,ILIST,ISAVE, IMASS, ITEMP, INERT,GRAVC
o NG2S = NG2S + 1 :
?4 C.... WRITE 'MODEL SUMMARY' RECORD (B-2)

; NUNITS = 0
NUNITE = 1
‘ NSTFS = 0
‘ NINTS = 0
NPATS = 0
NCONS = 0

1 NLOADS = MIN (NLCA,2)

f WRITE (ISLG2S,2002) NUNITS,NUNITE,NSTFS,NINTS,NPATS,NCONS, NLOADS

- NG2S = NG2S + 1 .
C
C —memmeccemmee————-
C MATERIAL SUMMARY
c -=----- ,
c .
NSTGM = NMATT
C
Cc - ——— -
C FABRICATION, ELEMENT AND NODE SUMMARIES
C reemcccccccccccccccremeccecccae e — e ————
C
. C.ee. NOTE: A STAGS FABRICATION CORRESPONDS TO A GIFTS MAT-THS PAIR.
. C

IF (NTHST.GT.MAXTHS.OR,NMATT.GT.MAXMAT) GO TO 801
DO 100 I=1,MAXTHS
DO 100 J=1,MAXMAT
; » FAT(I,J) = 0
t Y 100 CONTINUE

C.... LOOP ON GIFTS ELEMENTS / COUNT STAGS ELEMENTS, FABRICATIONS

O

DO 200 IELT=1,NELTT
, IE = IELT
b~ CALL 1IN ELT (1E)

IF (NEU.LE.O) GO TO 200
IF (IAPL,.NE.O) GO TO 200
IF (IORD.GT.MAXEGO) GO TO 802
IF (IT.GT.6) GO TO 803

GO TO (803, 210, 220, 220, 220, 220), IT

GIST Tutorial / Part 3
Section 3.3: The G2S Adaptor / Subroutine G2SMS

sese 1-DIMENSIONAL ELEMENTS / FABRICATIONS
NSTGE(2) = NSTGE(2) + 1
IF (FAT(NTHS,NMAT) .LT.0) GO TO 200
NSTGFl = NSTGFl + 1
FAT(NTHS, NMAT) = -1
GO TO 200

2-DIMENSIONAL ELEMENTS / FABRICATIONS
I =3 :

IF (IT.GT.4) I=4

NSTGE(I) = NSTGE(I) + 1

IF (FAT(NTHS,NMAT).LT.0)

NSTGF2 = NSTGF2 + 1

FAT(NTHS, NMAT) = -2

CONTINUE

WRITE 'RESOURCE SUMMARY' RECORD (B-3)
WRITE (ISLG2S,2003) NSTGM,NSTGFl,NSTGF2
NG2S = NG2Ss + 1

WRITE 'DISCRETIZATION SUMMARY' RECORD (H-1)
WRITE (ISLG2S,2005) NGPT,NSTGE
NG2S = NG2S + 1

CLOSE GIFTS DATA-BASE
CALL CLS ELT
CALL CLS THS
CALL CLS MAT

RETURN
ERROR EXITS

801 WRITE (ISLOUT,8010) MAXMAT
8010 FORMAT (/67H >> ERROR >> NO. OF MATERIAL/THICKNESS GROUPS TOO LA
1RGE. [G2SMS1//29X,9H/ LIMIT =,13,2H / /)
ISTAT = -1
CALL G2S F
802 WRITE (ISLOUT,8010) NEU,IT,IORD,MAXEGO
8020 FORMAT (/57H >> ERROR >> ELEMENT GEOMETRIC ORDER TOO HIGH. [G2S
1MS1//15X,11BELEMENT NO.,3X,4HTYPE, 3X,5HORDER / 20X, I5,2(3X,15),
2 10H -- LIMIT=,Il/)
ISTAT = -1
CALL G2S F
803 WRITE (ISLOUT,8030) NEU, IT
8037 FORMAT (/49H >> ERROR >> UNADAPTABLE ELEMENT TYPE. [G2SMS]
1//15%X,11HELEMENT NO.,3X,4HTYPE / 20X,15,3X,15 /)
ISTAT = -1
CALL G2S F

C
C FORMATS
C

2000 FORMAT (2A4,57X, 6H § A-1)

2001 FORMAT (615,1H,E10.4,25X, 5H$ B-1)
2002 FORMAT (715,31X, 5HS B-2)

2003 FORMAT (1X,315,50X, 5H$ B-3)

2005 PORMAT (1X,515,40X, SH$ H-1)

i v ‘ il e A SR VA.,N g -‘,g,A_‘»)'_-'__ om . aafa .v o -

GIST Tutorial / Part 3 PAGE 33 |
Section 3.3: The G2S Adaptor / Subroutine G2SMS

END g

4
4
'
i L
v
Kl
i e
i
L]
n
4
-
-

GIST Tutorial / Part 3 PAGE 34
Section 3.3: The G2S Adaptor / Subroutine G2SU

C=DECK G2SU
SUBROUTINE G2SU (ICOMM)
C
C=PURPOSE USER COMMAND INTERFACE WITH 'G2S' ADAPTOR
C=AUTHOR G.M.STANLEY
C=VERSION 1.0
C=EQUIPMENT INDEPENDENT

C

C=UPDATED JAN30/1981

o

C DECLARATIONS

C
COMMON /CMDSLT/ 1SLIN, ISLOUT, ISLLST, ISLTTI,ISLTTO, ISLLPT
COMMON /STATUS/ ISTAT,ISLG2S,NG2S
COMMON /OPTION/ LISTOP

C
CHARACTER*7 KEY, CCLVAL

C

C L 0 G I C

C

Ceee.. INITIALIZE
ICOMM = 0

C

C.... PROMPT USER FOR COMMAND

10 CALL CLNEXT (' G2 s > ', 'lCOMMANDS: ADAPT | QUIT', ITEMS)
IF (ITEMS .LE. 0) GO TO 10

C
KEY = CCLVAL(1)
IF (KEY(1:3) .EQ. 'ADA') GO TO 100
IF (KEY(1:3) .EQ. 'QUI") GO TO 200
WRITE (ISLOUT,2010) KEY
GO TO 800

C

C.... 'ADAPT' COMMAND :

C

100 CALL CLSTAT (NEXT, ITYPE,NV)
IF (NEXT .GT. 0) GO TO 110
LISTOP = 0
ICOMM =]

GO TO 900

110 KEY = CCLVAL (NEXT)
IF (KEY(1:3) .EQ. 'LIS') GO TO 120
WRITE (ISLOUT,2110) KEY
GO TO 800

120 KEY = CCLVAL (NEXT+1l)
LISTOP = 0
IF (KEY(1:3) .EQ. °'BRI') LISTOP = 1
IF (KEY(1:3) .EQ. 'FUL') LISTOP = 2
IF (LISTOP .GT. 0) GO TO 130
WRITE (ISLOUT,2120)
GO TO 800
130 ICOMM = 1
GO TO 900

C.... 'QUIT' COMMAND

c
200 ICOMM = 2 ,‘
EE— nisitnn ‘ abmt ..

:
t

. L it i P - o

GIST Tutorial / Part 3
Section 3.3: The G2S Adaptor / Subroutine G2SU

GO TO 900
ERROR TRAP
ISTAT = -1
GO TO 10

COMMAND INTERPRETED.
RETURN

FORMATS

FORMAT (/27H >>> INVALID COMMAND >>> A7/)
FORMAT (/27H >>> INVALID KEYWORD >>> aA7/)

FORMAT (/47H >>> INVALID DATA >>> LIST = { BRIEF

END

| FULL })

>

4

PAGE 35

AD-A103 801 LOCKHEED MISSILES AND SPACE CO INC PALO ALTO CA PALO =-=ETC F/6 13/13
INTERACTIVE NONLINEAR STRUCTURAL ANALYSIS: ENHANCEMENT.{U)
JUL 81 6 M STANLEY NUUUI“-SO-C-OBSI

UNCLASSIFIED LMSC-D811535

3.3
.

R

s ®

GIST Tutorial / Part 3
Section 3.3: The G2S Adaptor / Subroutine G2SX

C=DECK G2SX
PROGRAM G2SX
C
C=CDC1 (INPUT=512,0UTPUT=512, TAPES=INPUT, TAPE6=OUTPUT)
C
C=PURPOSE EXECUTIVE FOR GIFTS->STAGS ADAPTOR
C=AUTHOR G.M,STANLEY
C=VERSION JAN18/1981

C=EQUIPMENT CDC VAX

C=KEYWORDS EXECUTIVE GIFTS STAGS ADAPTOR
C

C=BLOCK ABSTRACT

G2SX IS THE EXECUTIVE FOR THE GIFTS-TO-STAGS PREPROCESSING
ADAPTOR, IT SUPERVISES THE CREATION OF A FORMATTED
(CARD-IMAGE) INPUT FILE, 'CASE'.G2S, FOR THE STAGS1 MODULE.
ABSTRACT
LOGIC

INITIALIZE OPERATIONS
CALL G285 I

a0 OOOG?OOOOO
™

e«s. READ COMMAND
CALL G25 U (ICOMM)
IF (ICOMM .EQ. 2) GO TO 900

.++ TRANSFORM MODEL SUMMARY DATA
CALL G2S Ms

«... TRANSFORM MODEL RESOURCE DATA
CALL G2S MR _
TRANSFORM MODEL CONFIGURATION DATA
CALL G2S MC

«os o TRANSFORM MODEL LOAD DATA
CALL G2S ML

FINALIZE OPERATIONS
CALL G2S F

.
Oe

0O OO OO0 00 e Xg! (eX @)
.
Qe .
Oe .

END

PAGE 36

GIST Tutorial / Part 3 PAGE 37
Software Architecture

| 3.4 THE STAGS->GIFTS (POSTPROCESSING) ADAPTOR: S2G

The S2G processor, or Adaptor, is the complement of the G2S

processor (see Section 3.3). It is the GIST architectural component

which constitutes the "postprocessing interface" between STAGS and

GIFTS. S2G "adapts"™ the results of a STAGS analysis for GIFTS

postprocessing, i.e., interactive-graphics evaluation. This is a
! database to database transfer function as 1illustrated in the
: following diagram:

. User Input
T) (commands)

STAGS Database -—=-- > | S52G | ==——— > GIFTS Database

User dQutput
(summary)

The internal structure of the S2G Adaptor reflects the requirements
of its output destination, the GIFTS (postprocessing) database. The
processor is composed of the following basic routines:

S2GX Main Program ("Executive")
$2GI Initializes program operations
§2GU User (command) interface routine
52GSPA Oversees adaptation of spatial solutions (disp/stress)
S2GDNS Creates DNS file containing "displacement" solutions
- S2GSTR Creates STR file containing "stress" solutions
; S2GP Finalizes program operations

s

v 8

A listing of the FORTRAN 77 source code for all of the above
routines is presented on the following pages (in alphabetical
order). Note that a number of GIFTS and STAGS utility subroutines
(and COMMON blocks) are employed throughout the processor.
Documentation on these utilities may be found in [G3) and [S4],
respectively,

GIST Tutorial / Part 3 PAGE 381
Section 3.4: The S2G Adaptor / Subroutine S2GDNS

C=DECK S2GDNS

SUBROUTINE S2GDNS (ISTEP, IMODE,NSOLN, SOLN, ISTAT)
C
C=PURPOSE ADAPT SOLUTION VECTOR FROM STAGS->GIFTS
C=AUTHOR G.M.STANLEY
C=VERSION JAN25/1981
C=EQUIPMENT INDEPENDENT

o
C DECLARATIONS
C

COMMON /USERI1O/ 1DI,IDO

COMMON / PREC / IPREC
Cc

COMMON /STAT/ LHARD(10) ,LSOFT(20),LCASE(30)

COMMON /DOFS/ NRDOFS, IDOFA,NDOFA,NDOFP(31) , IFDOFS(6)

COMMON /STEP/ LSTEP(10) ,FSTEP(10) |

COMMON /SOLN/ NWSOLN, INSOLN, ISOLN(8) ,FSOLN(10)
C

COMMON /UNIFI/ UNICF,UNISF,UNIDF,UNIVF, IUNIT,KUNIT

INTEGER UNICF,UNISF,UNIDF, UNIVF
COMMON /UNISTA/ NHED(4) ,UNICA(31) ,UNISA(31),UNIDA(31) ,UNIVA(31)
INTEGER UNICA » UNISA » UNIDA + UNIVA

COMMON /NDTAB/ 1UPT, ISYS,NUJ,JP,XS,YS,XG, YG,2zG,TG(3,3),IACT

1, IBC, NOFF, NMS, LMS
C

COMMON /JOB/ XJOB, XJOB2,YJOB(5)

COMMON /PAR/ LHV(13),LGL(5),LP(25),LS(16),LM(11)

COMMON /DNS/ DN(8)

COMMON /PTS/ NU,NS, ISTRKT,ISTIPLT,VCSMC(9) ,WRKPAD(8),

1 LMN, INTP, NLDREC, NBL, NFR, MFP
C

DOUBLE PRECISION VN(6)
C=CDC DIMENSION VN(6)

c g
EQUIVALENCE (LP(2) ,NGPA), (LP(15),NDST), (LS(9),ISTDN)
EQUIVALENCE (LCASE(12) ,NDOFS)
EQUIVALENCE (ISOLN(1),ISTYPE), (ISOLN(5),ISDOFS)
EQUIVALENCE (FSOLN(1) ,FSPALD), (FSOLN(2),FSPBLD)
EQUIVALENCE (FSOLN(3) ,FSTIME), (FSOLN(4),PSMODE)
EQUIVALENCE (DN(1),IDNTYP), (DN(4),IDNSTP), (DN(S),IDNMOD)
c
DATA ICONF/1/
c
c L 0 G I C
c
C - - = - - - - -
c ADAPT SELECTED VECTOR
C - - o o o e e —— - e o e - s e
c
ISTAT = 0
CALL 1IN SOLN (SOLN, IMODE,ISTEP,0,0,0,IS)
IF (IS .LE. 0) GO TO 900
C
IF (ISDOFS .EQ. NDOFS) GO TO 200
c

Cevesososs BOUNDARY CONDITION TRANSFORMATION REQ'D (UN-IMPLEMENTED)
WRITE (IDO,2445) ISTEP

GO TO 900
C

= - . R > T YO o b i JRiee” .

P
GIST Tutorial / Part 3 PAGE 39
Section 3.4: The S2G Adaptor / Subroutine S2GDNS
200 WRITE (IDO,2200) NSOLN,SOLN, IMODE, ISTEP
CALL IN SOLN (SOLN, IMODE, ISTEP,1,UNIDF,1,IS)

esesssses OUTPUT GIFTS HEADER RECORD

OO0 O

450 IDNTYP = 0

IF (ISTYPE .EQ. 6) IDNTYP=1
¢ IF (IMODE .GT. 0) IDNTYP=2
: IDNSTP = ISTEP]
IDNMOD = IMODE
DN(2) FSTIME
DN(6) FSMODE
DN(7) FSPALD
DN(8) FSPBLD

. c
§ CALL OUT DNS (0,NSOLN)
E .. C
‘4€ Ceeeeooees GENERATE NODAL VECTORS
C
DO 500 NODE=1,NGPA i
CALL MOVER (0,0,DN,1,8)
:‘ CALL VECIO (ICONF,NODE,6,IPREC,VN,1)
;o DO 600 I=1,6
600 DN(I) = VN(I)
DN(7) = SQRT (DN(1) **2 + DN(2)**2 + DN(3)**2)
DN(8) = SQRT (DN(4)**2 + DN(5)**2 + DN(6) **2)

C *** CHECK FOR COORDINATE TRANSFORMATIONS "
N = NODE

CALL 1IN PTS (N)

IPAUX = NODE

IF (LMN .GT. 0) ‘ IPAUX = LMN

C *** OUTPUT DISPLACEMENTS, AS COMPUTED
CALL OUT DNS (IPAUX,NSOLN)
IF (LMN .LE. 0) GO TO 500

C *** TRANSFORMATIONS EXIST; GET THEM
CALL IN PTS (IPAUX) i
K=0 .
: DO 601 J=1,3 i
DO 601 I=1,3
K=K+ 1
TG(I,J) = VCSMC(K)

L

‘ C #*+*% COMPENSATE FOR GIFTS TRANSFORMATION ERROR
IF (J.BQ.2) TG(I'J) = "'I'G(I,J)
601 CONTINUE

C *** TRANSFORM "LOCAL" DISPLACEMENTS TO "GLOBAL"

DO 610 I=1,3

- DN(1) = 0 |
DN(I+3) = 0 i
DO 610 J=1,3
DN(1) = DN(I) + TG(I,J) * VN(J)
DN(I+3) = DN(I+3) + TG(I,J) * VN(J+3)

610 CONTINUE

GIST Tutorial / Part 3 PAGE 40
Section 3.4: The S2G Adaptor / Subroutine S2GDNS :

C *** QUTPUT "GLOBAL" DISPLACEMENTS (IFF "LOCAL” SYSTEM EXISTS)
CALL OUT DNS (NODE,NSOLN)
C
500 CONTINUE
C
700 ISTAT = 1
ISTDN = 1

900 RETURN

FORMATS

aOnn O

2200 FORMAT (25H <> GIFTS SOLUTION NUMBER I4,13H <==> STAGS A4,214)
2440 FORMAT (//51H >>> E R R O R >>> CURRENT STAGS DOF MAP MISSING.

l, 10H [S2GDNS1/)
2445 FORMAT (/38H >>> WARNING >>> BOUNDARY CONDITIONS
1, 19H UPDATED SINCE STEP 14,10H. [S2GDNS]/)
Cc
END

r®

N

'R

T

GIST Tutorial / Part 3
Section 3.4: The S2G Adaptor / Subroutine S2GF

C=DECK S2GF
SUBROUTINE S2GF (ISTAT)
(o
C=PURPOSE FINALIZE OPERATIONS FOR 'S2G' MODULE
C=AUTHOR G.M.STANLEY [January, 1981 1
C=aVERSION 1.0
C=EQUIPMENT INDEPEKDENT
C=UPDATED March 7 1981

C
C DECLARATIONS
C
COMMON /USERIO/ IDI,IDO
COMMON /STG/ CASE(2) ,IGOPEN, IGUNIT, IGBUFF
COMMON /PAR/ LRV(13),LGL(5),LP(25),LS(16),LM(11)
LOGICAL PRESNT
C
EQUIVALENCE (LP(15) ,NDST), (LS(9),ISTDN), (LS(13),ISTES)
Cc
DATA XPAR /4H PAR/
C
C LOGIC
o
C.... Update GIFTS Database

IF (ISTAT.GT.0) CALL OUT PAR

C.... Release STAGS Database
caLL ¢Ls stGe (0,0,0,0,1IS8)

C
IF (ISTAT .LE. 0) GO TO 800
IF (NDST .GT. 0) WRITE (IDO,2001)
RETURN
(o
C.... Error Termination]
800 STOP ’
C
C FORMATS
C
2001 FORMAT (/21H <> READY FOR DISPLAY /)
C

END

PAGE 41

TN, R AR T = - -

GIST Tutorial / Part 3 PAGE 42
Section 3.4: The S2G Adaptor / Subroutine S2GI

C=DECK S2GI
SUBROUTINE S2GI
C
C=PURPOSE INITIALIZE OPERATIONS FOR S2G MODULE
C=AUTHOR G.M.STANLEY
C=VERSION 1.0
C=EQUIPMENT CDC UNIVAC VAX
C
) * C=UPDATED MAY 27 1981
. S C
3 c DECLARATIONS
= o
;. COMMON A(1)
COMMON /VMBUFT/ V(1)
COMMON /S2GVER/ S2GVER(2)
COMMON /PREC/ IPREC
COMMON /USERIO/ 1DI,IDO, IDNET
COMMON /NITNOT/ NIT,NOT

COMMON /STG/ CASE(2) ,IGOPEN, IGUNIT, IGBUFF

COMMON /STAT/ LHARD(10) ,LSOFT(20) ,LCASE(30)

COMMON /SOLN/ NWSOLN, IWSOLN, ISOLN(8) ,FSOLN(10)

COMMON /CONF/ NWCONF, IWCONF , KCONF , JNCONF (3) ,JECONF (3) ,JMCONF (3)
1, IFCONF (8)

COMMON /UNIFI/ UNICF,UNISF,UNIDF,UNIVF,IUNIT,KUNIT

COMMON /UNISTA/ NHED,NUNIT,NUNITS, NUNITE

1, UNICA(31), UNISA(31) UNIDA(31), UNIVA(31)

COMMON /UNICI/ LENC,LNOD, LELT LMID, NNOD, NELT, NWN, NFN, NFM, NDOFL, IUC

COMMON /JOB/ XJOB(2) ,YJOB(5)

COMMON /PAR/ LHV(13),LGL(5),LP(25),LS(16),LM(11)

COMMON /PTSBUF/ ISLPTS,LOCPTS,NBPTS,LPTSSZ(5),

1 IBPTS(102) ,FBPTS(170)

COMMON /ELTBUF/ISLELT,LOCELT,NBELT,LELTSZ(5) ,IBELT(252) ,FBELT(100)
COMMON /DNSBUF/ISLBUF, LOCDNS, NBDNS, LDNSSZ (5) , IBDNS(2) ,FBDNS(80)
COMMON /STRBUF/ISLSTR,LOCSTR,NBSTR,LSTRSZ(5) , IBSTR(2) ,FBSTR(80)

COMMON /STEPS/ NSTEPS, ISTEPS(3)

. INTEGER UNICF,UNISF,UNIDF,UNIVF,UNICA,UNIDA,UNISA,UNIVA
. INTEGER VMPARS(6), VMINFO(7)

INTEGER ICLIP(4)

LOGICAL PRESNT

CHARACTER*24 CASENAM, CCLVAL
EQUIVALENCE (LP(15) ,NDST), (LS(9),ISTDN), (LS(13),ISTES)

DATA XPAR/4H PAR/, XDNS/4H DNS/, XSTR/4H STR/

DATA UNICA,UNISA,UNIDA,UNIVA / 31*1,31%*65,31*1,31*1 /
DATA 1uc/o0/

DATA VMPARS /0,0,0,0,0,0/, NOT/26/
DATA ICLIP /4*0/

DATA NSTEPS,ISTEPS /4*0/

L 0 G I C

(e XsKelsg!

«e.. IDENTIFY PROCESSOR

et i i i b a2 M il et)

GIST Tutorial / Part 3
Section 3.4: The S2G Adaptor / Subroutine S2GI

L: 2]

*hkk
X 2
L : 3

aaon o000

10

20

C....

Co..-

C..'.

C....

C....

WRITE (IDO,2000) S2GVER(1)
READ CASE NAME

CHECK FOR NETWORK CONTROL

CALL CLMODE (ICLIP,1,0)

READ (IDNET,1000,END=10,ERR=10) CASENAM
WRITE (IDO,2001) CASENAM

GO TO 20

CALL CLNEXT (' JoB: ', 'l ', ITEMS)
IF (ITEMS .EQ. 0) GO TO 800
CASENAM = CCLVAL (1)

CALL CC2H (CASENAM(1:1) ,CASE(1),4)
CALL CC2H (CASENAM(5:5) ,CASE(2),4)
CALL CC2H (CASENAM(1:1) ,XJOB(1),4)
CALL CC2H (CASENAM(5:5) ,XJoB(2) ,4)

ACCESS STAGS DATABASE

IGBUFF
IOPEN 0

ILIST 0

CALL OPN STG (IOPEN,ILIST,0,0,IS)
IF (IS .LE. Q) GO TO 801

1

PREPARE FOR STAGS LOCAL DATA MANAGEMENT

CALL VM INIT (0)

CALL VM OPEN (LNAM,UNICF, VMPARS)
CALL VM OPEN (LNAM,UNIDF, VMPARS)
CALL VM OPEN (LNAM,UNISF, VMPARS)
CALL VM OPEN (LNAM,UNIVF, VMPARS)

RETRIEVE STAGS STATISTICS DATA-SET
CALL IN STAT (0,0,0,0,1IS)
RETRIEVE STAGS CONFIGURATION DATA-SET

ICONF = 1

CALL 1IN CONF (ICONF,0,0,0,IS)

IF (IS .LE. 0) GO TO 803

CALL IN CONF (ICONF,l1,UNICF,UNICA(ICONF),IS)

UNICA(ICONF) = 1
CALL UNITIO (ICONF,1l)

ACCESS GIFTS DATABASE

CALL INITIO
ISLIN = IDI
ISLOUT = IDO
ISLTTI = IDI
ISLTTO = IDO
IF (.NOT.PRESNT (XPAR)) GO TO 802

8 e

PAGE 43

P

P

GIST Tutorial / Part 3 PAGE 44

Section 3.4: The S2G Adaptor / Subroutine S2GI

o
C.... PREPARE FOR GIFTS LOCAL DATA MANAGEMENT
Cc

LOCDNS = 0

NBDNS = 1

LOCSTR = 0

NBSTR =1

LOCELT = 0

NBELT =1

LOCPTS = 0

NBPTS =1
C
C.... DELETE EXISTING GIFTS POSTPROCESSING FILES
Cc

CALL DELETE (XDNS)
CALL DELETE (XSTR)
NDST = 0
ISTDN = 0
ISTES = 0

RETURN
ERROR EXITS

a0 O

800 CALL S2GF (~1)
801 WRITE (IDO,2010)
CALL S2GF (-1)
802 WRITE (IDO,2020)
CALL S2GF (-1)
803 WRITE (IDO,2030)
CALL S2GF (-1)

FORMATS

oOnon

1000 FORMAT (Aa9)

2000 FORMAT (//12H <<>> S 2 G ,11X,25H < STAGS->GIFTS ADAPTOR >
1, 14X, 6H GIST/A4)

2001 FORMAT (7H CASE: A9 /)

2010 FORMAT (/46H >>> E R R O R >>» STAGS DATABASE NOT FOUND.

1, 78 [S2GI1l /)

2020 FORMAT (/46H >>> E R R O R >>> GIFTS DATABASE NOT FOUND.
1, 78 [S2GI1] /)

2030 FORMAT (/52H >>> E R R O R >>» STAGS MODEL DEFINITION MISSING.
1, 78 (s2G1] /)

END

GIST Tutorial / Part 3 PAGE 45
Section 3.4: The S2G Adaptor / Subroutine S2GSPA

C=DECK S2GSPA
SUBROUTINE S2GSPA
C
C=PURPOSE ADAPT SPATIAL SOLUTIONS FROM GIFTS =-> STAGS
C=AUTHOR G.M.STANLEY
C=VERSION JAN27/1981
C=EQUIPMENT INDEPENDENT

c
' c DECLARATIONS
L]
C
COMMON /STEPS/ NSTEPS, ISTEPS(3)
c
COMMON /STAT/ LHARD(10),LSOFT(20) ,LCASE(30)
COMMON /DOFS/ NRDOFS, IDOFA,NDOFA,NDOFP(31) ,IFDOFS(6)
COMMON /SOLN/ NWSOLN, IWSOLN, ISOLN(8),FSOLN(10)
c
COMMON /PAR/ LHV(13),LGL(5),LP(25),LS(16),LM(11)
C
COMMON /UNIFI/ UNICF,UNISF,UNIDF,UNIVF, IUNIT,KUNIT '
INTEGER UNICF,UNISF, UNIDF, UNIVF ;
COMMON /UNISTA/ NHED(4) ,UNICA(31),UNISA(31),UNIDA(31),UNIVA(31) Y
INTEGER UNICA ,UNISA ,UNIDA , UNIVA ;
C
COMMON /USERIO/ IDI,IDO
C
EQUIVALENCE (ISTEPS(1),ISTEPl),(ISTEPS(2),ISTEP2), (ISTEPS(3),INC)
EQUIVALENCE (LCASE(12),NDOFS)
EQUIVALENCE (LP(15),NDST), (LS(9),ISTDN), (LS(13),ISTES)
C
C L 0 G I C
C
’ C.... SCAN STAGS DATABASE; COUNT AVAILABLE SOLUTIONS
, c .
i DO 100 ISTEPP = ISTEPl,ISTEP2,INC
: ISTEP = ISTEPP-1
C
CALL 1IN SOLN ('DISP',0,1STEP,0,0,0,IS)
, IF (IS .GT. 0) NDST = NDST + 1
4 C
. CALL 1IN SOLN ('VELO',0,ISTEP,0,0,0,IS)
. IF (IS .GT. 0) NDST = NDST + 1
r « C
DO 200 IMODE = 1,10
] CALL 1IN SOLN ('MODE',IMODE,ISTEP,0,0,0,IS)
IF (IS .GT. 0) NDST = NDST + 1
i 200 CONTINUE
i ‘ 100 CONTINUE
1 IF (NDST .GT. 0) GO TO 300
‘ WRITE (IDO,2100)
. GO TO 800
C
c
ok C.... INPUT CURRENT STAGS DOF MAP
= C

300 CALL IN DOFS (NDOFS,0,0,0,IS)
IF (IS .GT. 0) GO TO 310
WRITE (1DO,2300)
b GO TO 800

T

b
|
b
b -
i
-
)

' 2000 FORMAT ()
.N A 2100 PORMAT (/47H >>> SORRY >>> REQUESTED SOLUTIONS NOT FOUND. /)

GIST Tutorial / Part 3
Section 3.4: The S2G Adaptor / Subroutine S2GSPA

310 ICONF = 1
CALL 1IN DOFS (NDOFS,1,UNIVF,UNIVA(ICONF),IS)

WRITE (IDO,2000)
eees ADAPT SELECTED SOLUTIONS

OoO0N0n O

CALL OPN DNS
CALL OPN STR
CALL OPN ELT
CALL OPN PTS

NSOLN = 1

O

DO 400 ISTEPP = ISTEPl,ISTEP2,INC
ISTEP = ISTEPP-1

eseescsess ADAPT DISPLACEMENT VECTOR
CALL S2GDNS (ISTEP,0,NSOLN, 'DISP',ISTAT)

eessesess ADAPT "STRESSES"
CALL S2GSTR (ISTEP,0,NSOLN,'STRE',JSTAT)

IF (ISTAT.GT.0 .OR. JSTAT.GT.0) NSOLN = NSOLN+1l

Qo O o0 00

seeecessees ADAPT VELOCITY VECTOR
CALL S2GDNS (ISTEP,0,NSOLN, 'VELO',ISTAT)
IF (ISTAT .GT. 0) NSOLN = NSOLN + 1
C
Ceeevessess ADAPT EIGENVECTORS
DO 450 IMODE=1,10
CALL S2GDNS (ISTEP,IMODE,NSOLN, 'MODE', ISTAT)
IF (ISTAT .LE. 0) GO TO 400
NSOLN = NSOLN + 1 :
450 CONTINUE
400 CONTINUE
C
NSOLN = NSOLN - 1
IF (NSOLN .GT. 0) GO TO 500
WRITE (1DO,2600)
GO TO 800
Cc
500 CONTINUE

CALL CLS PTS
CALL CLS ELT
CALL CLS STR
CALL CLS DNS

700 RETURN

esess. ERROR TRAP
800 CALL S2GF (-1)

FORMATS

anon a0 o

PAGE 46

R, A AR 1 L 52 s b

) .
e
A
.
]
i
|
+
!
i
{ .
i
i
t
i
1
4
4

e A SR NI T 5 i Wy N RS (RO b AT sy e e o

GIST Tutorial / Part 3
Section 3.4: The S2G Adaptor / Subroutine S2GSPA

1 108 [S2GsPAal/)

2600 FORMAT (/38H >>> SORRY >>> NO SOLUTIONS ADAPTED.
c .

END

PAGE 47

R, B v,

GIST Tutorial / Part 3 PAGE 48
Section 3.4: The S2G Adaptor / Subroutine S2GSTR

C=DECK S2GSTR !
SUBROUTINE S2GSTR (ISTEP, IMODE,NSOLN, SOLN, ISTAT)

o

C=PURPOSE ADAPT STRESSES FROM GIFTS->STAGS DATABASES

C=AUTHOR G.M.STANLEY

C=VERSION JAN25/1981

C=EQUIPMENT INDEPENDENT

1
C [
C DECLARATIONS :
C

COMMON /USER1O/ IDI,IDO

COMMON /PRECIS/ IPREC i
(o

35 COMMON /STAT/ LHARD (10) ,LSOFT(20) ,LCASE(30)
r COMMON /STEP/ LSTEP(10) ,FSTEP(10)
' COMMON /SOLN/ NWSOLN, IWSOLN, ISOLN(8) ,FSOLN(8)

S | c
COMMON /UNIFI/ UNICF,UNISF,UNIDF,UNIVF,IUNITS,KUNITS
INTEGER UNICF,UNISF, UNIDF, UNIVF
COMMON /UNISTA/ NHED(4) ,UNICA(31),UNISA(31),UNIDA(31),UNIVA(31)
INTEGER UNICA ,UNISA »UNIDA ,UNIVA
COMMON 7ELTAB/ LEVM,LEFM,NEFM, IET,AET, IOPE, JOPE, MFAB,
1 ANGLE, ECY,ECZ, ILIN, IPLAS, NECP,NCP(10) ,LOCE
COMMON /UNISTR/ LENS,LSTR(5)
c
COMMON /PAR/ LHV(13) ,LGL(5) ,LP(25) ,LS(16) ,LM(11)
' COMMON /ELT/ NEU, NES, ISTRKT, IELPLT, IT, IORD, IST, IAPL, NLDRC2,
. 1 NCPE, NGP, NLFLG,NSTPT, NLAYR, ISTPTR, NMAT, NTHS,
= 2 FAC(5) ,ECCEN, WRKPAD(3) ,ALPHID,LCP(8)
COMMON /STR/ ST(8)
c
DIMENSION STRESS(6) ,RESULT(1),STRAIN(1)
C
EQUIVALENCE (STRESS,RESULT),” (STRESS,STRAIN)
EQUIVALENCE (LSTR(2),IETS), (LSTR(3),IDVR),
1 (LSTR(4) ,KFAB), (LSTR(5),NLAY)
EQUIVALENCE (LP(3) ,NELTG), (LP(15),NDST), (LS(13),ISTES)
EQUIVALENCE (ST(1),ISTTYP), (ST(4),ISTSTP)
EQUIVALENCE (ST(5),ISTMOD), (ST(7),FCl)
EQUIVALENCE (ISOLN(1l),ISTYPE), (ISOLN(5),ISNDOF)
, EQUIVALENCE (FSOLN(1l) ,FSPALD), (FSOLN(2),FSPBLD)
. EQUIVALENCE (FSOLN(3) ,FSTIME), (FSOLN(4),FSMODE)
EQUIVALENCE (ISTPTR,IPGIFT), (ISTRKT,IESTAG)
C
DATA ICONF /1/
DATA DEG2RAD /.017453293/
M
C L 0 G I C
C
C | eeececmecccscccccnesnscseces e s e - - o e e o e s e e e e O D =
C ADAPT SELECTED STRESS STEP
alt C mmmmeecmmmeeeee- e ————— e R
- c |
ISTAT = 0 :
C i
C.veeeesas SCAN STAGS DATA-BASE FOR STEP 'ISTEP' STRESSES
o

CALL IN SOLN (SOLN,0,1STEP,0,0,0,1S)

GIST Tutorial / Part 3 PAGE 49
Section 3.4: The S2G Adaptor / Subroutine S2GSTR
(o
Cieeseeses STRESSES EXIST, LOCALIZE
C
WRITE (IDO,2210) NSOLN, SOLN, IMODE, ISTEP
C
CALL IN SOLN (SOLN,0,ISTEP,l,UNISF,1,IS)
C
: Cecseeaeees OUTPUT GIFTS STRESS-GROUP DESCRIPTOR RECORD
. . ¢
; ' ISTTYP = 0
‘ IF (ISTYPE .EQ. 6) ISTTYP = 1
: ISTSTP = ISTEP
! ST(2) = FSTIME
. ST(7) = FSPALD
L ST(8) = FSPBLD
! CALL OUT STR (0,NSOLN)
. C |
k Ceveecessses GENERATE GIPFTS ELEMENT STRESS RECORDS
o C
IEGIFT = 0
IPGIFT = O
DO 300 IE=1,NELTG
C
Ceveececcncessss GET ELEMENT DIRECTORY RECORDS
' C
" IEGIFT = IEGIFT + 1
CALL 1IN ELT (IEGIFT)
IF (NEU .LE. 0) GO TO 300
IF (IESTAG .LE. 0) GO TO 300
CALL ELTIO (IESTAG,ICONF,0,1)
CALL ESTIO (IESTAG,ICONF,0,0,0,0,1)
C
GO TO (310,320,330), IDVR
C ’
Ceeececscesoees BEAM ELEMENTS [RESULTANTS: N,QY,QZ,MY,MZ,T]
] C
4 310 CALL ESTIO (IESTAG, ICONF,RESULT,1,0,0,1)

ST(1) = RESULT(1)
r ST(2) = RESULT(4)
. XSI = ANGLE*DEG2RAD
4 ‘ ST(5) = RESULT(2) *COS(XSI) - RESULT(3)*SIN(XSI)
ST(6) =-RESULT(2) *SIN(XSI) - RESULT(3)*COS(XSI)
CALL OUT STR (IPGIFT,NSOLN)

GO TO 300
C
Ceveeeesneeosss SHELL ELEMENTS [STRESSES: SIGXX,SIGYY,SIGXY (BOT/TOP)]
C
320 DO 325 IFIBER=1,2
CALL ESTIO (IESTAG,ICONF,STRESS,3,1,IFIBER,1)
CALL MOVER (0,0,ST,1,8)
- CALL MOVER (STRESs(4),1,ST,1,3)
. FC1 = SQRT(ST(1) **2 + ST(1)*ST(2) + ST(2)**2
1 1 + 3,.%ST(3) **2)

IPGIFT = IPGIFT+1

CALL OUT STR (IPGIFT,NSOLN)
] 325 CONTINUE
' GO TO 300

— A

GIST Tutorial / Part 3
Section 3.4: The S2G Adaptor / Subroutine S2GSTR

Co escecencsosce SOLID ELEMENTS (UN-IMPLEMENTED)
Cc

330 GO TO 300
C

300 CONTINUE
C

700 ISTAT = 1

ISTES = 1

c

900 RETURN
Cc
C FORMATS
C
2210 FORMAT (25H <> GIFTS SOLUTION NUMBER I4,13H
C

END

T ST A ¥ | e e e a

PAGE

<==> STAGS A4,2I4)

GIST Tutorial / Part 3
Section 3.4: The S2G Adaptor / Subroutine S2GU

C=DECK S2GU
SUBROUTINE S2GU (ICOMM)
C
C=PURPOSE USER INTERACTION ROUTINE FOR 'S2G' MODULE
C=AUTHOR G.M.STANLEY
C=VERSION 1.0
C=EQUIPMENT CDC UNIVAC VAX
Cc
C=UPDATED JAN 31 1981

DECLARATIONS

Onon

INTEGER S2GCOM, S2GDAT
COMMON /USERIO/ 1DI,IDO
COMMON /STEPS/ NSTEPS,ISTEPS(3)
CHARACTER*7 KEY, CCLVAL

LOGIC

eeso INITIALIZE
ICOMM =

PROMPT USER FOR COMMAND

oo o000 O

[
(=]

CALL CLNEXT (' S 2 G > ', 'lCOMMANDS: ADAPT | QUIT', ITEMS)
IF (ITEMS .EQ. 0) GO TO 10

KEY = CCLVAL (1)

IF (KEY(1:3) .EQ. 'ADA') GO TO 100

IF (KEY(1:3) .EQ. 'QUI') GO TO 300

WRITE (IDO,2011) KEY

GO TO 10
C
C.... 'ADAPT' COMMAND
C

100 CALL CLSTAT (NEXT,TYPE,NV)
IF (NEXT .GT. 0) GO TO 110
CALL CLNEXT (' G 2 S ADAPT > ', 'lKEYWORD: STEPS', ITEMS)
IF (ITEMS .EQ. 0) GO TO 10
NEXT = 1

110 KEY = CCLVAL (NEXT)
IF (KEY(1:4) .EQ. 'STEP') GO TO 120
WRITE (IDO,2111) KEY
GO TO 10

C.... READ 'STEP' DATA
120 NSTEPS = 0
CALL CLOADI (NEXT+1,-3,0,ISTEPS,NV)
IF (NV ,GT. 0) GO TO 140
135 WRITE (1DO,2121) ISTEPS
GO TO 10
140 DO 160 I=1,2
IF (ISTEPS(I) .LT. 0) GO TO 135
160 ISTEPS(1) = ISTEPS(I) + 1
ISTEPS(2) = MAX (ISTEPS(2),ISTEPS(1l))
ISTEPS(3) = MAX (ISTEPS(3),1)
NSTEPS = (ISTEPS(2)-ISTEPS(1))/ISTEPS(3) + 1

PAGE 51

B s b

-

GIST Tutorial / Part 3 PAGE 52
Section 3.4: The S2G Adaptor / Subroutine S2GU

RETURN
Ceeee '"QUIT' COMMAND

300 ICOMM = 3
RETURN

FORMATS

2 eXg)

! 2011 FORMAT (/27H >>> INVALID COMMAND >>> A7)
2111 FORMAT (/27H >>> INVALID KEYWORD >>> a7)
2121 FORMAT (/47H >>> INVALID DATA >>> STEPS = stepl,step2,inc)

END

GIST Tutorial / Part 3

Section 3.4:

C=DECK 52GX

The S2G Adaptor / Subroutine S2GX

PROGRAM S2GX
C=CDC1 (INPUT=512, OUTPUT=512, TAPES=INPUT, TAPE6=OUTPUT)

Cc
C=PURPOSE

EXECUTIVE FOR STAGS->GIFTS ADAPTOR MODULE

C=AUTHOR G.M.STANLEY
C=VERSION JAN25/1981
C=EQUIPMENT CDC VAX

C

C=BLOCK ABSTRACT

QOO0 O0O0000O0

COMMON
COMMON
COMMON
COMMON
COMMON
COMMON

COMMON
COMMON

INTEGER

COMMON

DATA

O o000 o

DATA
DATA
DATA
DATA

ADAPTOR.

PROGRAM S2GX IS THE EXECUTIVE FOR THE STAGS->GIFTS SOLUTION
IT SUPERVISES THE ADAPTATION OF SOLUTION VECTORS
AND ELEMENT STRESSES FROM THE STAGS DATABASE INTO THE GIFTS
DATABASE (I.E., CASE.STG -> CASE.DNS,CASE.STR).

=END ABSTRACT

DECLARATIONS

A(500)

/VMBUFT/ Vv(20000)
/S2GVER/ S2GVER(2)
/STEPS/ NSTEPS, ISTEPS(3)
/PREC/ IPREC

/USERIO/ 1DI,IDO, IDNET

/STG/ CASE(2) ,IGOPEN, IGUNIT, IGBUFF
/UNIFI/ UNICF,UNIDF,UNISF,UNIVF,IUNIT,KUNIT
UNICF,UNIDF, UNISF,UNIVF
/JOB/ XJOB,XJOB2,YJOB(5)
DATA
S2GVER /4H1.0/,4HVAX /
IDI1,IDO, IDNET /5,6, 25/
IGUNIT /10/
UNICF, UNIDF,UNISF,UNIVF /15,16,17,18/
IPREC/2/

LOGIC

eess INITIALIZE PROGRAM OPERATIONS
CALL S2GI

C.... READ COMMAND
CALL S2GU (ICOMM)
IF (ICOMM .EQ. 1) GO TO 100
IF (ICOMM .EQ. 3) GO TO 300

Ce... ADAPT SOLUTION VECTORS/STRESSES AT SELECTED STEPS
100 CALL S2G SPA

C.... GENERATE SOLUTION HISTORIES (UN-IMPLEMENTED)
200 CONTINUE

s 11 A = e M S armb s Arssn v A A 1s

- P

——

I 53

GIST Tutorial / Part 3 PAGE 54
Section 3.4: The S2G Adaptor / Subroutine S2GX

300 CALL S2GF (1) :
C :
END !

o NS ATl e < I - s orb b i =
@ Rearidn

e x
3

e, S i SN, AT O 1 s U~ el ot el i~ '~ bt

)
s g e e e, o

GIST Tutorial / Part 3 PAGE 55
Software Architecture

3.5 THE GIFTS/STAGS CONTROL MODULE: GIST

The GIST Control Module is the unifying agent of the GIST system.
It is the command-driven processor which constitutes essentially all
of the user/system interface outside of the GIFTS pre- and
postprocessors (see Part 1: The GIST Command Language). It is also
the means by which a "structural analysis operating system"”™ effect
is created, i.e., by invoking and monitoring the execution of the
various other processors without noticeable intervention (with the
user) from the actual operating system.

Conceptually, the Control Module may be thought of as a “capsule"”
which completely surrounds the GIST system and the computer
operating system as well., 1In actuality, however, it is only another
processor. what makes it special, is its responsibility for
*hiding”™ the computer operating system from the user, and for
coordinating, and providing a common means of access to, the rest of
the GIST system.

By necessity,. the Control Module has access to both the GIFTS and
the STAGS database AND in addition must interact (in place of the
user) with the computer operating system. To perform this last
function, a certain amount of "machine-dependence” (or to be more
precise, "operating system dependence") has been engendered; but
this has been isolated (we hope) within a small number of
subroutines,

The following diagram represents the flow of data through the
Control Module:

User Input
(commands)
|
|
GIFTS Database |] GIFTS Database
STAGS Database =—=-=-=> | GIsT | =———— > STAGS Database
0.S. Procedure | I 0.S. Procedures

User Output
(Status/Help/etc.)

The mechanism employed by the Control Module for communicating with
the computer operating system is the "procedure file" (or 0.S.
Procedure)., Practically all operating systems have this capability,
which amounts to allowing the user or user-program to prepare a
series of operating system commands in a so-called "procedure file" ;
which may then be added to the "“runstream"™ via another, special,)
operating system command. For example, on CDC/NOS, an operating

' system procedure file is invoked via: CALL Filename, while on the
n YAL/VNE SYSLSR.) mrulton of the form: @Filename, is used

B T —

GIST Tutorial / Part 3 PAGE 56
Section 3.5: The GIFTS/STAGS Control Module (GIST)

With the above information as background, we will now look beyond
the black walls surrounding the Control Module into the interior.
What we will find is an internal structure which essentially
parallels the GIST Command Language introduced in Part 1.

(NOTE: This parallelism is a common attribute of "command-driven"
processors, as opposed to "data-driven" processors which often read
everything at the outset and then proceed to process it in some
arbitrary order which bears little resemblance to the initial input.
As may be discerned from this description, the author is somewhat
biased towards "“command-driven" processors. This position has
evolved from experience and from the inherent neatness and
flexibility for both batch and interactive operation derived from
such a design; see [Nl1] and [N5] for amplification.)

The following is a brief summary of the basic subroutines comprising
the GIST Control Module:

GISTX Main Program ("Executive™)
GISTI Initializes program operations
GSGIFT Supervises action on all GIFTS-related commands
GSSTAG Supervises action on all STAGS-related commands
GSSETU Acts on the SETUP command
GSSTAS Acts on the STATIC command
GSDYNS Acts on the DYNAMIC command
GSEIGS Acts on the BUCKLING and VIBRATION commands
GSSTAC Acts on the COMPUTE command for static analysis
GSDYNC Acts on the COMPUTE command for dynamic analysis
GSEIGC Acts on the COMPUTE command for eigenvalue analysis
GSREV Supervises action on the REVIEW command
GSREVJ Acts on the REVIEW JOB command
GSREVM Acts on the REVIEW PREP command
GSREVA Acts on the REVIEW ANALYSIS command
GSREVY ,... Acts on the REVIEW STRATEGY command
GSREVS Acts on the REVIEW SOLUTION command
GSREVR Acts on the REVIEW POST command
GSCIR Acts on the CLEAR command
GSMAN .,... Acts on the MANAGE command

* GSOS Creates all operating system procedure files

* GSBS Prepares for /BATCH operations
GSHELP Acts on the HELP command
GSQUIT Acts on the QUIT command
GISTF Finalizes program operations

where the subroutines flagged with an asterisk are inherently
operating system dependent (or OD). Note that the main program
(GISTX) may also be a bit OD in the sense that adustable array
dimensions and FORTRAN unit numbers are contained therein. Also,
there are a number of GIFTS, STAGS and NICE utilities that are
called from within the above routines. The documentation for these
utilities may be found in: [(G31, [S4], and [N5] respectively.

A source code listing of the Control Module will not be presented
here, simply to avoid unnecessary bulk (approximately 3000 lines).
However, it is provided as part of the standard GIST installation
package (see Appendix C).

S ———— e T R RS = dne

TR TR

LI

R B S A

4

GIST Tutorial

APPENDICES

("Currently in Preparation")

R

GIST Tutorial

(Gl]

[G2]

[G31

(G4]

(N11

{N2]

(N3]

(N4]

(N5]

(s1]

(s2]

[s3]

REFERENCES

H.A. Kamel, M.W. McCabe, et, al., "The GIPTS System; Version 5.0
User's Manual", University of Arizona, Interactive Graphics
Engineering Laboratory (IGEL), May 1979.

H.A. Kamel, M.W. McCabe, et. al., "GIFTS Primer; A First Intro-
duction to the GIFTS System®”, University of Arizona, Interactive
Graphics Engineering Laboratory (IGEL), May 1979.

H.A. Kamel, M.W. McCabe, et. al., "GIFTS~5 Systems Manual®,
University of Arizona, Interactive Graphics Engineering Labor-
atory, May 1980.

H.A. Kamel, M.W. McCabe, et. al., "GIFTS-5 Pocket Guide",
University of Arizona, Interactive Graphics Engineering Labor-
atory (IGEL), March 1980.

C.A. Felippa, "Architecture of a Distributed Analysis Network
for Computational Mechanics”, Proceedings of the Symposium on
Computational Methods in Nonlinear Structural and Solid Mech-
anics (wWashington, D.C., October 6-8, 1980), Pergammon Press,
London, pp. 405-414.

C.A. Felippa, "The Input-Output Manager DMGASP and the Direct
Access Library Manager EZ-DAL of the NOSTRA Data Management
System, LMSC-D628839, July 1978.

C.A. Felippa, "The Global Database Manager EZGAL, LMSC-D766995,
October 1980.

C.A. Felippa, "A Command Language Advanced Utility for Database
Editing: CLAUDE" -~ to be released. :

C.A. Felippa, "A Command Language for Applied Mechanics Process-
ors, LMSC-D63582, March 1980 (revised April 1981).

B.0O. Almroth, F.A. Brogan, and G.M. Stanley, "Structural Analysis
of General Shells; Volume II: USer Instructions for STAGS~C1l",
LMSC-D633873, July 1979.

B.0. Almroth et, al., "Structural Analysis of General Shells;
Volume I: Theory Manual for STAGS-Cl1l", LMSC, March 1978.

B.O. Almroth et. al., "Structural Analysis of General Shells;
Volume III: Example Manual for STAGS-Cl" -- to be released.

[

GIST Tutorial / Part 2 PAGE 47
Section 2.2.3: Analysis Computation

2.3 THE POSTPROCESSING PHASE

The following GIST commands are associated with the "postprocessing”
phase® of structural analysis, in which the solutions obtained by
the analyzer are evaluated interactively:

RESULT Invokes the GIFTS "Result Display" processor
REVIEW Monitors Job status (e.g., REVIEW SOLUTION)

RESULT is used to evaluate the solution from a *physical”
perspective, The analyst may employ it to view, either graphically
or in tabular form, such things as displacements, stresses, strains,
resultants, etc. at any number of discrete solution steps. The
prerequisite is, of course, that some solutions have been computed
AND SAVED by the STAGS analyzer (see Section 2.2). The adaptation
of the results for GIFTS display is automatic, as will be explained
later in this section.

REVIEW (esp., REVIEW SOLUTION) may be used to evaluate the solution
from a "computational"™ perspective. By this, we refer to the
re-examination of such things as convergence error, iteration count,
stiffness update status and determinant, on a step by step basis.
Such information is indispensable when formulating or revising
strategy for subsequent solution intervals, or just for assessing
the accuracy of the current solution,

In the following subsections, we will outline and demonstrate both
forms of GIST postprocessing.

.

doiiith,

ey

PRETRNCII

LIRS

GIST Tutorial / Part 2 PAGE 48
Section 2.3: The Postprocessing Phase

2.3.1 "PHYSICAL" EVALUATION

The evaluation of the structural response (or modal characteristics)
thus far computed by the STAGS analyzer is performed exclusively
with the interactive GIFTS processor: RESULT. RESULT may be used
to selectively display such physical parameters as displacements,
velocities, stresses, strains and stress resultants in a variety of
both graphical and tabular formats. For example, graphical displays
include: deformed geometry, stress contours, element-labelled
stress levels (normalized w.r.t. a failure criterion), and
principal stress directions.

as are many discrete solution steps (or modes) as are available may
be observed in a single RESULT session. However, the view is
presently restricted to be spatial (i.e., one "frame®” at a time)
rather than temporal. (This means that an external processor will
be required if such things as response history "graphs" of
individual displacement components are desired.)

To check on the availability of solutions in the database, which is
largely determined by previous solution strategies, the user may
employ the REVIEW command, in the form:

REVIEW/TOC ANALYSIS

The above command lists a "table of contents” of the "analysis
database” (discussed further in Section 2.4) and will indicate which
solution steps (and/or modes) are currently available for
postprocessing.

To select the desired solution steps and initiate interactive post-
processing with RESULT, the user enters the GIST command:

RESULT SOLUTIONS = stepmin [,stepmax,stepincl

where °‘stepmin, stepmax' represent a range of solution step numbers
and 'stepinc' is an optional increment. The requested sequence may
include steps which are not available in the database; such "holes"
will be politely skipped over.

Before turning the user over to the GIFTS' postprocessor, the GIST
Control Module normally (i.e., by default) activates the so-called
STAGS~GIFTS "Adaptor" (S2G), which extracts the requested solution
data from the analysis database and recreates it in the
*postprocessing database", in a form convenient for GIPTS
utilization., In the process, a correspondence table between
RESULT's "Load Case"™ numbers (not to be confused with the load case
numbers employed during Pre-processing) and STAGS "solution step"
numbers will be printed on the screen.

The above description of the RESULT procedure will now be made clear
through an illustrative example followed by some remarks.

A S 5 e A S A R B 15 e =t ey B

GIST Tutorial / Part 2 : PAGE 49
Section 2.3.1: Postprocessing / "Physical®" Evaluation

Illustrative Example

Suppose we have computed and saved the first 10 solution steps of a
nonlinear static response analysis, and wish to sample the results
at steps 0, 5 and 10. Assuming we are already communicating with
the GIST Control Module, we thus enter the appropriate command:

GIST?> RESULT SOL = 0, 10, 5

Moments later, the STAGS->GIFTS Adaptor (S2G) goes to work and
eventually prints the following table:

POSTPROCESSING CORRESPONDENCE TABLE

GIFTS RESULTS | STAGS SOLUTIONS

"LOAD~-CASE"™ NO. 1 STEP 0 ~-- DISPLACEMENTS

-=- STRESSES

-~ STRESSES
"LOAD-CASE" NO. 3 STEP 10 =-- DISPLACEMENTS

|
I
i
|
"LOAD-CASE" NO. 2 | STEP 5 -- DISPLACEMENTS
|
!
|
| -= STRESSES

This is immediately followed by:

<<>> RESULT [Result Display ! GIPFTS/xxx

,

JOB: XXXX

LOADING CASE 1.

*

We are "now"” communicating with the RESULT postprocessor. Since it
is one of the GIPTS interactive processors, we will henceforth have
to employ the GIFTS command language [Gl], as explained in Section
1l.1. The following is a hypothetical dialogue with RESULT which
should serve to highlight some of its key features as well as
establishing some basic conventions for result interpretation:

First, we reflect on the GIFTS message which was printed as we
entered RESULT:

Loading Case 1

The so-called "loading case” number mentioned in this module is NOT
the same as the loading case number referenced during
pre-processing, e.g., in BULKLB or EDITLB. 1Instead, it is just a
pointer to the set of solutions currently residing in the

GIST Tutorial / Part 2 PAGE 50
Section 2.3.1: Postprocessing / "Physical" Evaluation

postprocessing database, and should be interpreted according to the
POSTPROCESSING CORRESPONDENCE TABLE printed above. Hence, for the
given example, "Loading Case 1" actually represents Solution Step 0,
"Loading Case 2" represents Solution Step 5, and so on.

So, since we are presently switched (by default) to "Loading Case"
1, we may begin our evaluation of Solution Step 0, (i.e., the linear
version of Step 1).

For instance, if we enter:
* ELEM / PLOT

we would obtain a picture of the deformed structure, scaled in some
reasonable manner, and labelled on the periphery with such
information as the model orientation, geometric scale factors, "load
case", etc,.

To rotate the model, say 70 degrees about the screen's x-axis,
followed by 20 degrees about the screen's y-axis, and then amplify
the displacements by a factor of 2, we would enter:

* ROTV/70,20/ SCALEDN/2/ PLOT

which is the corresponding sequence of GIFTS commands. (Remember,
GIFTS employs the slash (/) to allow multiple commands on a single
line; while GIST employs it to designate qualifiers).

To zoom in on the area of apparent maximum deformation, and find out
which nodes are involved, we might enter something like:

* BOX { 40,50 / 100,200 / 0,300 / PN / PLOT

which would display that portion of the deformed structure which is
contained in the global Cartesian "box" bounded by the planes X=40,
X=50; y=100, y=200; and z=0, z=100; and label all nodes therein.

Then, to list the actual displacement values at the nodes we have
just displayed, we may use the information command:

* INFDN / nl, n2, ntot /

where 'nl, n2, ntot' represents a sequence of node numbers that
presumably containes the nodes of interest.

For extremists, a full table of nodal displacements may be obtained
and sent to the line-~printer via:

* LPON / INFDN/1,nmax/ LPOFF

where 'nmax' is greater than or equal to the total number of nodes
in the structure, and LPON and LPOFF respectively turn the
line-printer mode-switch on and off. (Note that the printing does
not actually take place until the user exits from RESULT via QUIT.)

GIST Tutorial / Part 2 PAGE 51
Section 2.3.1: Postprocessing / "Physical"™ Evaluation

Stresses may be viewed in a variety of ways., For example, we may
list them, contour them, element-code them, or indicate their
principal values and directions.

To display stress contours (involving shell or continuum~type
elements only) we may simply enter:

* CONTOUR / PLOT

which, by default, will contour the mid-surface values of an
“effective stress"™ parameter (currently, the Von Mises stress). The
stress ranges corresponding to each contour 1line are computed
automatically, but may be overridden by the user via the RANGE
command (e.g., for higher resolution of a particular area or stress
regime) . Note that all stresses are normalized with respect to the
"yield stress® initially defined for the material (see Section
2.1.1).

To shift attention from the middle surface to either the top or
bottom surface, the user may enter:

* TOP
or:
* BOTTOM

respectively. These surface-switch commands: TOP, MIDDLE and
BOTTOM, apply to all surface elements (e.g., membranes, plates and
shells) and remain active for all stress-related displays until
another such command is issued. The interpretation of "top" and
"hottom” is related to the element coordinate systems: x', y', 2'.
The top surface is at z' = z'(max) and the bottom surface at z' =
z' (min) . ’

Another way of evaluating the "effective" stresses, but in a more
discrete, element-oriented fashion, is to use the FC (failure
criterion) option. For example, by entering:

* FC / PLOT

the stress levels of individual elements will be indicated by
special symbols appearing at their centroids. Each symbol (usually
an alphanumeric character) will represent a different range of
"normalized®™ Von Mises stress, and a 'symbol-key' (showing the
correspondences) will be displayed to the right of the plot frame.
(The “yield stress®”, which was defined for each material way back in
pre~processing, is used as the normalization factor.) This type of
stress display can be useful for evaluating element "mesh patterns”,

GIST Tutorial / Part 2 PAGE 52
Section 2.3.1: Postprocessing / "Physical" Evaluation

To display the principal stress directions and relative magnitudes,
we could enter:

* PRINST / PLOT

The principal directions at the centroid of each surface element are
displayed as a tiny pair of intersecting vectors, whose lengths are
proportional to the absolute value of the corresponding stress
“components. To display "compressive” principal stresses only, the
command CPRINST may be used instead of PRINST. Such displays may,
for instance, facilitate "load path" visualization €for the
design-oriented analyst.

Remember that the surface on which stresses are currently being
evaluated always depends on the last TOP, BOTTOM or MIDDLE command
issued; the displays will be labelled accordingly.

Finally, to list the actual values of individual stress components,
an appropriate information command is available:

* INFST /nel,ne2,ntot/

where 'nel,ne2,ntot' represents a sequence of element numbers. As
usual, to review the element numbers before issuing the information
command, the user may BOX-in on the region of interest and plot them
via EN/PLOT.

The INFST command will list the basic stress components for each
element, which will of course depend on type. For example: surface
elements will 1list SIGMAX, SIGMAY and TAUXY evaluated at a
centroidal location on either top, middle or bottom surfaces; while
beam elements will list the axial and torsional stresses, SIGMAX,
TAUXY and TAUXZ at a number of points on the mid-span cross-section.

Similar listings can be obtained for stress-resultants via the
command:
* INFSTR /nel,ne2,ntot/

Keep in mind that element stresses, stress-resultants and strains
are always oriented with respect to the "element" coordinate
systems. For the precise definitions of these coordinate systems
and the various conventions associated with them, refer to [Gl] in
conjunction with Appendix A.

Having evaluated the important results for one solution step, we may
turn our attention to another by issuing the LDCASE command. For
instance:

* LDCASE/2

would switch the RESULT pointer to "Loading Case" number 2, which,

GIST Tutorial / Part 2 PAGE 53
Section 2.3.1: Postprocessing / "Physical" Evaluation

in our illustrative example, is equivalent to Solution Step 5. We
could then proceed to display and list this solution just as we did
the former one.

However, if we wish to view a solution step which was not included
in our original RESULT request (i.e., at the time of invocation), we
will have to return to the Control Module and ask for more.

For example, suppose we wanted to go back and fetch solution step
number 3. We might proceed as follows:

* QuUIT

GIST)> RESULT sSsoL = 3, 10, 7

POSTPROCESSING CORRESPONDENCE TABLE

GIFTS RESULTS I STAGS SOLUTIONS

STEP 3 =-- DISPLACEMENTS
-- STRESSES

"LOAD-CASE" NO. 1

"LOAD-CASE" NO. 2 STEP 10 =-- DISPLACEMENTS

-- STRESSES

<<>> RESULT [Result Display] GIFTS/xxx

JOB: XxXxxXx

LOADING CASE 1. (Now correspondes to Solution Step 3)

*

Note that the original set of solution steps (0,5 and 10) has been
cleared and replaced with the new set requested. (Since we had not
yet looked at step number 10, we requested it again.) This just
reflects the volatility of the postprocessing datatbase, which acts
essentially as a "window" to the analysis database.

—

.(N
“"A--.<

it

GIST Tutorial / Part 2
Section 2.3.1: Postprocessing / "Physical®™ Evaluation

PAGE 54

Remagks

The above illustration of a RESULT session represents only a
sampling of GIFTS postprocessing capabilities. The reader is
referred to the usual references [Gl1-G4] for a more complete
description of the commands, options and conventions.

The term "loading case” used within RESULT is a hold-over from
the GIFTS linear analysis package. The term should eventually
be removed and replaced with something more neutral, 1like
"result number”, Also, an information command to identify the
contents of a particular "result number" with such things as
"solution step®™ and "solution type” would be preferrable to the
present POSTPROCESSING CORRESPONDENCE TABLE.

Eigenvectors are automatically transferred to the postprocessing
database and assigned a RESULT "Load Case” number when the
corresponding solution step is requested.

For example, if a linear buckling analysis has been performed
the GIST command:

RESULT SOLUTION = 0

will prepare both the linear (pre-buckling) solution and - up to
the first three buckling mode vectors for RESULT postprocessing.
The POSTPROCESSING CORRESPONDENCE TABLE might then 1look as
follows:

GIFTS RESULTS I, STAGS SOLUTIONS

|

"LOAD-CASE" NO. 1 I STEP 0 -- DISPLACEMENTS
! —= STRESSES
|

"LOAD-CASE" NO. 2 | STEP 0 -- MODE 1
|

"LOAD-CASE" NO. 3 I STEP 0 -- MODE 2
I

"LOAD-CASE" NO. 4 ! STEP 0 -- MODE 3
|

To transfer more than 3 modes the MODE keyword may be employed,
eog. ’

GIST> RESULT SOLUTION = 0 MODES = 1,10
which would pick up the first 10 modes at solution step 0.

Velocity vectors will also be transferred automatically upon
RESULT invocation when a particular (dynamic) solution step is

GIST Tutorial / Part 2 PAGE 55
Section 2.3.1: Postprocessing / "Physical"™ Evaluation

requested. Velocity components may then be listed via the GIFTS
'INFDN' command, after switching to the appropriate "Load Case"
via the GIFTS 'LDCASE' command.

Stress resultants and strains do not yet enjoy the standard
stress display options described above. To 1list stress
resultants, use the GIFTS 'INFSTR' command which is analogous to
the 'INFST' (stress information) command.

NOTE: For beam elements, stresses must also be examined via the
information command ('INFST'). The beam stress display
capability present in the "GIFTS Linear Analysis Package” relies
on an internal stress computation algorithm which is not
applicable to external analyzers such as STAGS. Hence, all beam
stress-display options are temporarily "off-limits" to the GIST
user.

The "effective stress" computed and employed for contour and
failure criterion stress plots is presently hard-wired as the
von Mises yield criterion, defined by:

SVM = SQRT (.5*(SS12 + S§S23 + SS31))

where:
SS812 = (S1=52)**2
S823 = (S2-53) **2
S831 = (S3-S1) **2
and:

Sl1, S2, S3 are the principal stress
values,

The effective stress is normalized with respect to the "yield
stress”™ which was defined with the material at pre-processing
time. To change the definition of effective stress, a slight
modification to the STAGS->GIFTS Adaptor (G2S) would be
required., Clues on performing this simple operation are given
in Section 3.3. It is conceivable that a number of different
effective stress measures could be programmed into the Adaptor
as options to be selected at the time of RESULT invocation.

Eventually (after surface coordinates have become fully
implemented in GIFTS it should be possible to obtain contour or
element-coded (perhaps with color) displays of any arbitrary
stress, strain or stress resultant component. 1In the meantime,
this item sits very high on the "GIST WISH-LIST".

Rather than requesting a new set of solution vectors every time
RESULT is called upon, it is also possible to postprocess a
fixed set of solutions over many RESULT sessions, i.e., without
re-accessing the analysis database. By entering the "qualified"
GIST command:

RESULT/OLD

the RESULT processor is invoked directly, i.e., without

4

e AR SN R . e

GIST Tutorial / Part 2 PAGE 56
Section 2.3.1: Postprocessing / "Physical®™ Evaluation

intervention by the STAGS-GIFTS adaptor. The user may thus
resume an evaluation of whatever was 1last transferred to the
postprocessing database. This not only eliminates the
invocation delay, but enables the user to postprocess previously
computed solutions WHILE WAITING FOR A BATCH-RUN TO PRODUCE NEW
ONES. If you recall, the analyzer ties up the "analysis
database” only; the postprocessing database may therefore be
pre-stocked with solutions and evaluated while a batch
computation is actually in progress.

(Note: This remark may be unnecessarily abused by pushy project
managers and should therefore be whited-out after a first
reading by the analyst.)

GIST Tutorial / Part 2 PAGE 57
Section 2.3: The Postprocessing Phase

2,3.2 "COMPUTATONAL" EVALUATION

It is especially important in nonlinear structural analysis to
evaluate both the "physics™ and the "numerics"™ of the solution
before pushing on to higher and higher levels of loading (or time,
in transient analysis). One reason for this is the ever-present
possiblity of inadvertently obtaining either unconverged or spurious
solutions, In the latter case, a physical display may reveal the
"spuriousness"”, while in the former case, a careful 1look at the
computational statistics (e.g., relative errors, no. of iterations,
stiffness update frequency and the sign of the stiffness
determinant) over a series of solution steps may be required.
Hence, both forms of "postprocessing" are complementary, but neither
is sufficient for assuring the accuracy of a particular analysis.

There are presently three mechanisms provided by GIST for
computational postprocessing. The first is to save and scrutinize
the solution commentary which is automatically produced by the STAGS
analyzer each time the COMPUTE command is issued. This is easily
accomplished by using the OUTPUT keyword, as described in Section
1.5 under the COMPUTE command.

The second mechanism is to employ the REVIEW SOLUTION command. This
GIST Control Module feature provides essentially the same
information as in the previous case, except only for those solution
steps which have been successfully archived. (Again, see Section
1,5 for the proper usage of this command.)

The third mechanism for computational postprocessing is just barely
developed, but potentially powerful. It is to obtain a spatial
display of the "residual force” vector at specific solution steps.
This gives the analyst an idea of how well "equilibrium" is being
satisfied throughout the structure. "At the moment the best that can
be obtained is either a selective print-out or a "deformed geometry"
- type plot of "internal forces" via the GIFTS RESULT postprocessor
(see previous subsection). The difference between the "internal
force” vector and the "residual force" vector is the "external
force™ vector. Hence, the internal forces will approximate (in
magnitude) the external forces, and will yield the "reaction forces"
at degrees of freedom where displacement boundary conditions have
been prescribed. See the STAGS User's Manual (Section 6) for a more
precise definition of the internal force vector (which is
alternatively referred to as the "equilibrium force" vector
therein).

It would be desirable in future development efforts to introduce
full graphical-display capabilities for computational statistics.
This would allow the analyst to obtain, for example, contour plots
of residual forces, or "historical" plots of virtually any solution
parameter as a function of load or time step.

e O S T b b By e 5~ AN I P3N s BN I 1 e

GIST Tutorial / Part 2 PAGE 58
GIST Structural Analysis

2.4 DATABASE MANAGEMENT

The following GIST commands are associated with database management:

CLEAR Erases bulk portions of the database
MANAGE Invokes an interactive database "editor"
‘ REVIEW ... Lists current database table of contents

A
’

Since most data-management operations with GIST are automatic (going

on quietly behind the scenes of structural analysis) only a few

basic maintenance functions are left to the user. The purpose of
] this section 1is to describe the database, or disk archival, layout

for a GIST analysis and to show the user how to (1) monitor it
F periodically, (2) discard it when finished, and (3) edit it when
e | necessary. These functions are handled by the REVIEW, CLEAR, and
L MANAGE commands, respectively.

o= A o ARl PO TR Y P

Ty
'

Y e

CoRAT T U T T AT e e

]

.-

GIST Tutorial / Part 2 PAGE 59
Section 2.4: Database Management

2.4.1 THE GIST DATABASE LAYOUT

All data generated by the GIST system that may be of lasting
significance either during or after the course of structural
analysis is stored in a "database”. The GIST database actually
represents a collection of (permanent) disk files on which data is
neatly archived, for convenient access by both the user and the
software network.

Every GIST analysis, or "Job", generates its own independent
database and corresponding set of disk files. Files associated with
a particular Job are referred to collectively as the "Job database”,
and are accordingly tagged by the "Jobname" (defined in Section
1.1). The first part of each file name is identical to the Jobname,
and the last part (or "extension") reveals something about its
contents.

The Job database is partitioned (both 1logically and physically)
into:

(1) the Pre-processing Database
(2) the Analysis Database
(3) the Post-processing Databse

As expected, the pre- and post-processing databases are principally
the domain of the GIFTS processors, while the analysis database is
principally the domain of the STAGS processors. All three, however,
are accessible to the user from the GIST Control Module.

The Pre-processing Database

The pre-processing database consists of a set of files which contain
the current GIFTS definition of the model. They are summarized as
follows:

File Name | Contents

Job .PAR] GIFTS problem status parameters

Job .FIL | File size and data management parameters
Job .LIN | Key line generation data ‘

Job .GRD | Grid (surface) generation data

Job .PTS ! Basic nodal point data

Job ELT | Basic element data

Job ,MAT | Material properties

Job .THS | Thickness (i.e., section) properties

Job .LDS : Nodal load vectors

Element loads

Job .ELD

i

A e

